Collaborative Models for Ethical AI Integration in Human Resources
DOI:
https://doi.org/10.61978/shr.v1i1.525Keywords:
Artificial Intelligence, Human Resource Management, Organizational Structure, Digital Transformation, Collaborative Strategy, Algorithmic Fairness, Inclusive HR PolicyAbstract
This narrative review investigates the systemic and organizational factors influencing the adoption of artificial intelligence (AI) in human resource management (HRM). The study aims to synthesize current literature on how structural and social contexts affect the integration of AI technologies into HRM practices. Using a structured thematic analysis of recent scholarly contributions, the research explores the interplay between organizational culture, social systems, leadership dynamics, and collaborative strategies. The findings indicate that flat organizational structures and inclusive social systems significantly accelerate AI adoption, while hierarchical and siloed arrangements create barriers. Effective AI integration depends on transparent leadership, cross-functional collaboration, and adaptive HR policies that align technology with human-centered values. The review further underscores the role of algorithmic fairness, real-time performance analytics, and AI-powered recruitment systems in improving objectivity and operational efficiency. Collaborative strategies, involving IT experts, HR managers, ethicists, and external stakeholders, are critical to overcoming ethical and technical barriers. This review concludes that AI implementation in HRM requires a multi-level, systemic approach that goes beyond technological readiness. It calls for strategic alignment of organizational vision, inclusive policymaking, and intersectoral partnerships. The implications of this study suggest that AI, when ethically and strategically deployed, can reshape HRM practices to be more efficient, equitable, and sustainable.
References
Aboramadan, M., Jebril, M., & Maweri, A. (2024). The role of artificial intelligence in transforming human resource management in the Middle East (pp. 21–38). https://doi.org/10.1007/978-3-031-62369-1_2 DOI: https://doi.org/10.1007/978-3-031-62369-1_2
Altuntaş, G., Hoş, Y., & Tekin, İ. (2025). A bibliometric review on the use of artificial intelligence in human resources management (pp. 1–46). https://doi.org/10.4018/979-8-3693-7693-5.ch001 DOI: https://doi.org/10.4018/979-8-3693-7693-5.ch001
Arslan, A., Cooper, C., Khan, Z., Gölgeci, İ., & Ali, I. (2021). Artificial intelligence and human workers interaction at team level: A conceptual assessment of the challenges and potential HRM strategies. International Journal of Manpower, 43(1), 75–88. https://doi.org/10.1108/ijm-01-2021-0052 DOI: https://doi.org/10.1108/IJM-01-2021-0052
Asselborn, T., Melzer, S., Schiff, S., Bender, M., Marwitz, F. A., Aljoumani, S., Thiemann, S., Hirschler, K., & Möller, R. (2025). Building sustainable information systems and transformer models on demand. Humanities and Social Sciences Communications, 12(1). https://doi.org/10.1057/s41599-025-04491-x DOI: https://doi.org/10.1057/s41599-025-04491-x
Benabou, A., & Touhami, F. (2025). Empowering human resource management through artificial intelligence: A systematic literature review and bibliometric analysis. International Journal of Production Management and Engineering, 13(1), 59–76. https://doi.org/10.4995/ijpme.2025.21900 DOI: https://doi.org/10.4995/ijpme.2025.21900
Bhardwaj, S., Chopra, R., & Pandita, D. (2025). Navigating the digital evolution of HRM: An integrative review. International Journal of Organizational Analysis. DOI: https://doi.org/10.1108/IJOA-10-2024-4895
Chilunjika, A., Intauno, K., & Chilunjika, S. (2022). Artificial intelligence and public sector human resource management in South Africa: Opportunities, challenges and prospects. SA Journal of Human Resource Management. https://doi.org/10.4102/sajhrm.v20i0.1972 DOI: https://doi.org/10.4102/sajhrm.v20i0.1972
Chowdhury, K., Kawsar, S., & Imam, T. (2024). Rapid mass level organizational AI sensitization and skill development using no code AI tool. https://doi.org/10.2118/222844-ms DOI: https://doi.org/10.2118/222844-MS
Chowdhury, S., Budhwar, P., & Wood, G. (2024). Generative artificial intelligence in business: Towards a strategic human resource management framework. British Journal of Management, 35(4), 1680–1691. https://doi.org/10.1111/1467-8551.12824 DOI: https://doi.org/10.1111/1467-8551.12824
Dima, J., Gilbert, M., Dextras-Gauthier, J., & Giraud, L. (2024). The effects of artificial intelligence on human resource activities and the roles of the human resource triad: Opportunities and challenges. Frontiers in Psychology, 15. https://doi.org/10.3389/fpsyg.2024.1360401 DOI: https://doi.org/10.3389/fpsyg.2024.1360401
Doğru, T., Line, N., Mody, M., Hanks, L., Abbott, J., Açikgöz, F., & Zhang, T. (2023). Generative artificial intelligence in the hospitality and tourism industry: Developing a framework for future research. Journal of Hospitality & Tourism Research, 49(2), 235–253. DOI: https://doi.org/10.1177/10963480231188663
Fahed, G., Collins, B. N., Cai, N., Jimenez, J. I., Kitakata, H., Pino Moreno, J. E., & Alexander, K. M. (2025). Race, Genetics, and Social Determinants of Health in Transthyretin Cardiac Amyloidosis: A Literature Review and Call to Action. Current Cardiology Reports, 27(1). https://doi.org/10.1007/s11886-025-02220-z DOI: https://doi.org/10.1007/s11886-025-02220-z
Goense, C. J. D., Evers, Y. J., Hoebe, C. J. P. A., & Dukers-Muijrers, N. H. T. M. (2025). A Perspective on Home-Based Sexual Health Care: Evidence, Access, and Future Directions. Current HIV/AIDS Reports, 22(1). https://doi.org/10.1007/s11904-025-00724-5 DOI: https://doi.org/10.1007/s11904-025-00724-5
Hamzaa, H. G., Atta, M. H. R., Taha, H. M. A., Sayed, M. A., Ahmed, A. K., Othman, A. A., & Wahba, N. M. I. (2025). Exploring the role of spiritual leadership among nurse colleagues: an associative analysis of its impact on passion and altruism. BMC Nursing, 24(1). https://doi.org/10.1186/s12912-025-02750-5 DOI: https://doi.org/10.1186/s12912-025-02750-5
Iftikhar, R., Chiu, Y., Khan, M., & Caudwell, C. (2024). Human–agent team dynamics: A review and future research opportunities. IEEE Transactions on Engineering Management, 71, 10139–10154. https://doi.org/10.1109/tem.2023.3331369 DOI: https://doi.org/10.1109/TEM.2023.3331369
Kueper, J., Terry, A., Bahniwal, R., Meredith, L., Beleno, R., Brown, J., & Lizotte, D. (2022). Connecting artificial intelligence and primary care challenges: Findings from a multi stakeholder collaborative consultation. BMJ Health & Care Informatics, 29(1), 100493. https://doi.org/10.1136/bmjhci-2021-100493 DOI: https://doi.org/10.1136/bmjhci-2021-100493
Kumah, P., Nketia, I., Yaokumah, W., & Asante-Offei, K. (2024). Exploring the application of generative AI in human resource management (pp. 51–82). https://doi.org/10.4018/979-8-3693-5578-7.ch003 DOI: https://doi.org/10.4018/979-8-3693-5578-7.ch003
Lindgren, L. H., Thomsen, T., Hetland, M. L., Aadahl, M., Kristensen, S. D., de Thurah, A., & Esbensen, B. A. (2025). A self-management intervention for newly diagnosed with inflammatory arthritis: a randomized controlled feasibility and fidelity study. Pilot and Feasibility Studies, 11(1). https://doi.org/10.1186/s40814-025-01601-z DOI: https://doi.org/10.1186/s40814-025-01633-5
Malik, A., Lirio, P., Budhwar, P., Nguyen, M., & Fauzi, M. (2025). Guest editorial: Artificial intelligence (AI) in the world of work: Bibliometric insights and mapping opportunities and challenges. Personnel Review. DOI: https://doi.org/10.1108/PR-12-2024-1061
Mobasseri, K., Ghasemyani, S., Khodayari-Zarnaq, R., & Kousha, A. (2025). Developing a comprehensive model of home-based long-term care for older people in Iran: a multi-method study. BMC Health Services Research, 25(1). https://doi.org/10.1186/s12913-025-12434-0 DOI: https://doi.org/10.1186/s12913-025-12434-0
Paramita, D., Okwir, S., & Nuur, C. (2024). Artificial intelligence in talent acquisition: Exploring organisational and operational dimensions. International Journal of Organizational Analysis, 32(11), 108–131. https://doi.org/10.1108/ijoa-09-2023-3992 DOI: https://doi.org/10.1108/IJOA-09-2023-3992
Tairov, I. (2024). Artificial intelligence application in human resources management. Bm, 34(3). DOI: https://doi.org/10.58861/tae.bm.2024.3.05
Xiang, H., Lü, J., Косов, М., Volkova, M., Ponkratov, V., Masterov, A., & Zekiy, A. (2023). Sustainable development of employee lifecycle management in the age of global challenges: Evidence from China, Russia, and Indonesia. Sustainability, 15(6), 4987. https://doi.org/10.3390/su15064987 DOI: https://doi.org/10.3390/su15064987
Zawada, M. (2024). The impact of artificial intelligence on human resource management: Challenges, opportunities, and future directions. System Safety Human - Technical Facility - Environment, 6(1), 239–250. https://doi.org/10.2478/czoto-2024-0026 DOI: https://doi.org/10.2478/czoto-2024-0026
Zhang, Z. (2023). The HRM model based on competency model in the context of new age intelligence. Wireless Communications and Mobile Computing, 1–13. https://doi.org/10.1155/2023/6030183 DOI: https://doi.org/10.1155/2023/6030183


