Nonlinear Optical Systems for Quantum Information and Communication
DOI:
https://doi.org/10.61978/jftii.v1i1.578Keywords:
Nonlinear Optics, Quantum Information, Photonic Technologies, Signal Processin, Quantum Communication, Metasurfaces, OptomechanicsAbstract
Nonlinear optics (NLO) plays a foundational role in advancing both quantum and classical optical systems, enabling novel approaches to communication, computation, and sensing technologies. This review aims to explore the theoretical and practical landscape of NLO by synthesizing literature from Scopus and Google Scholar. A structured methodology was applied, employing targeted keywords and Boolean operators to filter high-quality, peer-reviewed articles focused on experimental applications, signal processing, and quantum information science. Studies meeting stringent inclusion criteria were analyzed thematically. The results identify three dominant themes: barriers to accessing NLO technologies, the quality and effectiveness of system implementation, and institutional and social influences on technology adoption. High costs, limited expertise, and infrastructural disparities hinder widespread use, particularly in developing regions. Performance metrics such as entanglement fidelity and signal-to-noise ratio are central to evaluating technological effectiveness. User perceptions highlight optimism for future integration but raise concerns about stability and cost. In addition, collaborative frameworks between academia and industry have proven essential in bridging the gap between theory and application. The discussion emphasizes the dual nature of NLO developments: reinforcing quantum theory while challenging classical models. Systemic factors including funding, policy, and international collaboration are crucial enablers. Evidence-based solutions such as advanced materials, metasurfaces, and quantum feedback control show promise. This review concludes that ensuring equitable access, strengthening policy support, and advancing multidisciplinary research are critical to unlocking the full potential of NLO technologies.
References
Aguilar, G., Souza, M., Gomes, R., Thompson, J., Gu, M., Céleri, L., … & Walborn, S. (2019). Experimental investigation of linear-optics-based quantum target detection. Physical Review A, 99(5). https://doi.org/10.1103/physreva.99.053813
Boyd, R. (2016). Advances in quantum nonlinear optics. https://doi.org/10.1364/lsc.2016.ltu4b.1
Brawley, G., Vanner, M., Larsen, P., Schmid, S., Boisen, A., & Bowen, W. (2016). Nonlinear optomechanical measurement of mechanical motion. Nature Communications, 7(1). https://doi.org/10.1038/ncomms10988
Brooks, D., Botter, T., Schreppler, S., Purdy, T., Brahms, N., & Stamper-Kurn, D. (2012). Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature, 488(7412), 476-480. https://doi.org/10.1038/nature11325
Burgwal, R., & Verhagen, E. (2023). Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-37138-z
Chen, Y., Zhang, T., Guo, G., & Ren, X. (2022). Research progress of integrated photonic quantum simulation. Acta Physica Sinica, 71(24), 244207. https://doi.org/10.7498/aps.71.20221938
Coudrat, L., Boulliard, G., Gérard, J., Lemaître, A., Degiron, A., & Leo, G. (2025). Unravelling the nonlinear generation of designer vortices with dielectric metasurfaces. Light Science & Applications, 14(1). https://doi.org/10.1038/s41377-025-01741-0
Crosse, J., Xu, X., Sherwin, M., & Liu, R. (2014). Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene. Nature Communications, 5(1). https://doi.org/10.1038/ncomms5854
Drummond, P., & Hillery, M. (2014). The quantum theory of nonlinear optics. https://doi.org/10.1017/cbo9780511783616
Du, F., Fan, G., Ren, X., & Ma, M. (2023). Deterministic hyperparallel control gates with weak kerr effects. Advanced Quantum Technologies, 6(10). https://doi.org/10.1002/qute.202300201
Fujii, K., & Nakajima, K. (2017). Harnessing disordered-ensemble quantum dynamics for machine learning. Physical Review Applied, 8(2). https://doi.org/10.1103/physrevapplied.8.024030
Iubini, S., Boada, O., Omar, Y., & Piazza, F. (2015). Transport of quantum excitations coupled to spatially extended nonlinear many-body systems. New Journal of Physics, 17(11), 113030. https://doi.org/10.1088/1367-2630/17/11/113030
Kanari-Naish, L., Clarke, J., Qvarfort, S., & Vanner, M. (2022). Two-mode schrödinger-cat states with nonlinear optomechanics: generation and verification of non-gaussian mechanical entanglement. Quantum Science and Technology, 7(3), 035012. https://doi.org/10.1088/2058-9565/ac6dfd
Krenn, M., Huber, M., Fickler, R., Łapkiewicz, R., Ramelow, S., & Zeilinger, A. (2014). Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proceedings of the National Academy of Sciences, 111(17), 6243-6247. https://doi.org/10.1073/pnas.1402365111
Lee, C., Tame, M., Lim, J., & Lee, J. (2012). Quantum plasmonics with a metal nanoparticle array. Physical Review A, 85(6). https://doi.org/10.1103/physreva.85.063823
Li, X., Li, H., Wang, Z., Chen, Z., Ma, F., Zhang, K., … & Wang, C. (2024). Advancing large-scale thin-film ppln nonlinear photonics with segmented tunable micro-heaters. Photonics Research, 12(8), 1703. https://doi.org/10.1364/prj.516180
Liu, H., & Helmy, A. (2025). Opportunities and challenges in quantum-enhanced optical target detection. ACS Photonics, 12(3), 1256-1258. https://doi.org/10.1021/acsphotonics.4c01799
Mandal, H., Ogunyemi, O., Nicholson, J., Orr, M., Lalisse, R., Rentería‐Gómez, Á., … & Goodson, T. (2024). Linear and nonlinear optical properties of all-cis and all-trans poly(p-phenylenevinylene). The Journal of Physical Chemistry C, 128(6), 2518-2528. https://doi.org/10.1021/acs.jpcc.3c07082
Mansuripur, M. (2024). Fundamental principles and applications of nonlinear optical phenomena in classical and quantum electrodynamics. https://doi.org/10.1117/12.3028528
Miao, Q., Li, X., Wu, D., Luo, J., Wei, T., & Zhu, H. (2019). Preparation methods and progress of experiments of quantum microwave. Acta Physica Sinica, 68(7), 070302. https://doi.org/10.7498/aps.68.20191981
Moreau, P., Toninelli, E., Gregory, T., & Padgett, M. (2019). Imaging with quantum states of light. Nature Reviews Physics, 1(6), 367-380. https://doi.org/10.1038/s42254-019-0056-0
Navarrete–Benlloch, C., Patera, G., & Valcárcel, G. (2017). Noncritical generation of nonclassical frequency combs via spontaneous rotational symmetry breaking. Physical Review A, 96(4). https://doi.org/10.1103/physreva.96.043801
Peng, K., Poore, R., Krantz, P., Root, D., & O’Brien, K. (2022). X-parameter based design and simulation of josephson traveling-wave parametric amplifiers for quantum computing applications. https://doi.org/10.1109/qce53715.2022.00054
Pryamikov, A., Hadžievski, L., Федорук, М., Turitsyn, S., & Aceves, A. (2021). Optical vortices in waveguides with discrete and continuous rotational symmetry. Journal of the European Optical Society Rapid Publications, 17(1). https://doi.org/10.1186/s41476-021-00168-5
Robson, C., Tamashevich, Y., Rantala, T., & Ornigotti, M. (2021). Path integrals: from quantum mechanics to photonics. APL Photonics, 6(7). https://doi.org/10.1063/5.0055815
Roztocki, P., Sciara, S., Reimer, C., Cortés, L., Zhang, Y., Wetzel, B., … & Morandotti, R. (2019). Complex quantum state generation and coherent control based on integrated frequency combs. Journal of Lightwave Technology, 37(2), 338-344. https://doi.org/10.1109/jlt.2018.2880934
Santandrea, M., Stefszky, M., Roeland, G., & Silberhorn, C. (2019). Characterisation of fabrication inhomogeneities in Ti:LiNbO3 waveguides. New Journal of Physics, 21(12), 123005. https://doi.org/10.1088/1367-2630/ab5cb5
Shen, B., Ji, L., Zhang, X., Bu, Z., & Xu, J. (2021). High field x-ray laser physics. Acta Physica Sinica, 70(8), 084101. https://doi.org/10.7498/aps.70.20210096
Shi, X., Mohanraj, S., Dhyani, V., Baiju, A., Wang, S., Sun, J., … & Zhu, D. (2024). Efficient photon-pair generation in layer-poled lithium niobate nanophotonic waveguides. Light Science & Applications, 13(1). https://doi.org/10.1038/s41377-024-01645-5
Shu-Xing, W., Tian-Jun, L., Xin-Chao, H., & Lin-Fan, Z. (2024). X-ray cavity quantum optics of inner-shell transitions. Acta Physica Sinica, 73(24), 246101. https://doi.org/10.7498/aps.73.20241218
Singh, S., Sephton, B., Buono, W., D’Ambrosio, V., Konrad, T., & Forbes, A. (2024). Light correcting light with nonlinear optics. Advanced Photonics, 6(02). https://doi.org/10.1117/1.ap.6.2.026003
Sperling, J., & Walmsley, I. (2020). Classical evolution in quantum systems. Physica Scripta, 95(6), 065101. https://doi.org/10.1088/1402-4896/ab833b
Strekalov, D., Marquardt, C., Matsko, A., Schwefel, H., & Leuchs, G. (2016). Nonlinear and quantum optics with whispering gallery resonators. Journal of Optics, 18(12), 123002. https://doi.org/10.1088/2040-8978/18/12/123002
Tang, J. (2025). Achieving robust single-photon blockade with a single nanotip. Nano Letters, 25(12), 4705-4712. https://doi.org/10.1021/acs.nanolett.4c05433
Tsang, M., & Caves, C. (2012). Evading quantum mechanics: engineering a classical subsystem within a quantum environment. Physical Review X, 2(3). https://doi.org/10.1103/physrevx.2.031016
Vielreicher, M., Schürmann, S., Detsch, R., Schmidt, M., Buttgereit, A., Boccaccını, A., … & Friedrich, O. (2013). Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds. Journal of the Royal Society Interface, 10(86), 20130263. https://doi.org/10.1098/rsif.2013.0263
Wang, D., Kelkar, H., Martín-Cano, D., Rattenbacher, D., Shkarin, A., Utikal, T., … & Sandoghdar, V. (2019). Turning a molecule into a coherent two-level quantum system. Nature Physics, 15(5), 483-489. https://doi.org/10.1038/s41567-019-0436-5
Wang, H., Zhang, X., Hua, J., Lei, D., Lu, M., & Chen, Y. (2021). Topological physics of non-hermitian optics and photonics: a review. Journal of Optics, 23(12), 123001. https://doi.org/10.1088/2040-8986/ac2e15
Welakuh, D., & Narang, P. (2024). Nonlinear optical processes in centrosymmetric systems by cavity-induced symmetry breaking. ACS Photonics, 11(2), 369-377. https://doi.org/10.1021/acsphotonics.2c01933
Zhang, J., Wu, R., Liu, Y., Li, C., & Tarn, T. (2012). Quantum coherent nonlinear feedback with applications to quantum optics on chip. IEEE Transactions on Automatic Control, 57(8), 1997-2008. https://doi.org/10.1109/tac.2012.2195871


