Quantum Technologies in Transition: Bridging Infrastructure, Policy, and Practice

Authors

  • Asep Irvan Irvani Universitas Garut
  • Rizki Ilmianih Universitas Tadulako
  • Nurul Kami Sani Universitas Tadulako

DOI:

https://doi.org/10.61978/jftii.v1i1.576

Keywords:

Quantum Key Distribution, Quantum Communication, Emerging Quantum Technologies, Secure Data Transmission, Quantum Infrastructure, Technology Policy, Quantum Sensing

Abstract

Quantum technologies have emerged as critical enablers of next-generation communication, computation, and sensing systems. This review aims to assess the current state of Quantum Key Distribution (QKD) and related quantum technologies by examining recent empirical findings, methodological innovations, and systemic challenges. A structured literature search was conducted across Scopus, PubMed, and Google Scholar using Boolean keyword combinations targeting QKD, quantum sensing, and communication applications. The review focused on peer-reviewed articles from the last five years and included experimental studies, simulations, and applied case analyses. Findings show that QKD has demonstrated remarkable reliability in both controlled laboratory and real-world settings. Studies on multicore fiber networks highlight the potential for high-dimensional communication security, while comparative analyses reveal disparities between implementation strategies across different regions. However, systemic challenges such as inadequate infrastructure, inconsistent regulation, and insufficient public understanding hinder wide-scale adoption. The discussion identifies critical factors contributing to these challenges and proposes actionable policy recommendations, including increased investment in infrastructure, standardized regulations, and targeted education programs. This review concludes that achieving the full potential of quantum technologies will require integrative strategies addressing technical, institutional, and social dimensions. Future research should emphasize longitudinal evaluation and interdisciplinary collaboration to enhance scalability and impact. The insights offered here provide a foundational framework for policymakers, researchers, and industry leaders to advance the adoption of secure, scalable quantum systems.

References

Ansari, S., Younis, A., Kolekar, Y., & Ramana, C. (2025). Cobalt ferrite nanoparticles: the physics, synthesis, properties, and applications. Applied Physics Reviews, 12(2). https://doi.org/10.1063/5.0244555

Chiesa, A., Santini, P., Gerace, D., Raftery, J., Houck, A., & Carretta, S. (2015). Digital quantum simulators in a scalable architecture of hybrid spin-photon qubits. Scientific Reports, 5(1). https://doi.org/10.1038/srep16036

Dong, H., Desaules, J., Gao, Y., Wang, N., Guo, Z., Chen, J., & Papić, Z. (2023). Disorder-tunable entanglement at infinite temperature. Science Advances, 9(51). https://doi.org/10.1126/sciadv.adj3822

Falci, G., Ridolfo, A., Stefano, P., & Paladino, E. (2019). Ultrastrong coupling probed by coherent population transfer. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45187-y

Ghafri, S., Munro, S., Cardella, U., Funke, T., Notardonato, W., Trusler, J., & May, E. (2022). Hydrogen liquefaction: a review of the fundamental physics, engineering practice and future opportunities. Energy & Environmental Science, 15(7), 2690–2731. https://doi.org/10.1039/d2ee00099g

Ghamsari, M., & Baniasadi, F. (2024). Quantum for biology: spectroscopy and sensing. Innovation and Emerging Technologies, 11. https://doi.org/10.1142/s2737599424300058

Giovanni, D., Ramesh, S., Righetto, M., Lim, J., Zhang, Q., Wang, Y., & Sum, T. (2020). The physics of interlayer exciton delocalization in ruddlesden–popper lead halide perovskites. Nano Letters, 21(1), 405–413. https://doi.org/10.1021/acs.nanolett.0c03800

Kim, Y., Goupalov, S., Weight, B., Gifford, B., He, X., Saha, A., & Htoon, H. (2020). Hidden fine structure of quantum defects revealed by single carbon nanotube magneto-photoluminescence. ACS Nano, 14(3), 3451–3460. https://doi.org/10.1021/acsnano.9b09548

Li, G., Luo, H., Yu, J., Hu, A., & Wang, J. (2024). Information-theoretic secure key sharing for wide-area mobile applications. IEEE Wireless Communications, 31(1), 118–124. https://doi.org/10.1109/mwc.012.2200289

Li, J., Li, Y., Du, S., Wang, Z., Gu, B., Zhang, S., & Xu, Y. (2019). Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Science Advances, 5(6). https://doi.org/10.1126/sciadv.aaw5685

Lufungula, L., Shams‐Ansari, A., Renaud, D., Beeck, C., Cuyvers, S., Poelman, S., & Kuyken, B. (2024). Integrated resonant electro‐optic comb enabled by platform‐agnostic laser integration. Laser & Photonics Review, 18(10). https://doi.org/10.1002/lpor.202400205

Mauranyapin, N., Terrasson, A., & Bowen, W. (2022). Quantum biotechnology. Advanced Quantum Technologies, 5(9). https://doi.org/10.1002/qute.202100139

Miranda, E. (2021). Quantum computer: hello, music! In Quantum Computer Music (pp. 963–994). https://doi.org/10.1007/978-3-030-72116-9_34

Rietsche, R., Dremel, C., Bosch, S., Steinacker, L., Meckel, M., & Leimeister, J. (2022). Quantum computing. Electronic Markets, 32(4), 2525–2536. https://doi.org/10.1007/s12525-022-00570-y

Roberson, T., Raman, S., Leach, J., & Vilkins, S. (2023). Assessing the journey of technology hype in the field of quantum technology. TATuP - Zeitschrift Für Technikfolgenabschätzung in Theorie Und Praxis, 32(3), 17–21. https://doi.org/10.14512/tatup.32.3.17

Sánchez‐Azqueta, C., Aldea, C., & Celma, S. (2024). A fully integrated nanosecond burst RF generator for quantum technologies. Electronics Letters, 60(1). https://doi.org/10.1049/ell2.13016

Sidhu, J., Joshi, S., Gündoğan, M., Brougham, T., Lowndes, D., Mazzarella, L., & Oi, D. (2021). Advances in space quantum communications. IET Quantum Communication, 2(4), 182–217. https://doi.org/10.1049/qtc2.12015

Steffens, A., Friesdorf, M., Langen, T., Rauer, B., Schweigler, T., Hübener, R., & Eisert, J. (2015). Towards experimental quantum-field tomography with ultracold atoms. Nature Communications, 6(1). https://doi.org/10.1038/ncomms8663

Wang, K., Yang, D., Wu, C., Shapter, J., & Priya, S. (2019). Mono-crystalline perovskite photovoltaics toward ultrahigh efficiency? Joule, 3(2), 311–316. https://doi.org/10.1016/j.joule.2018.11.009

Wang, R., Wang, Q., Kanellos, G., Nejabati, R., Simeonidou, D., Tessinari, R., & Moazzeni, S. (2020). End-to-end quantum secured inter-domain 5G service orchestration over dynamically switched flex-grid optical networks enabled by a Q-ROADM. Journal of Lightwave Technology, 38(1), 139–149. https://doi.org/10.1109/jlt.2019.2949864

White, S., Klauck, F., Tran, T., Schmitt, N., Kianinia, M., Steinfurth, A., & Solntsev, A. (2020). Quantum random number generation using a hexagonal boron nitride single photon emitter. Journal of Optics, 23(1), 01 01. https://doi.org/10.1088/2040-8986/abccff

Yan, Q., Zhao, B., Zhou, R., Ma, R., Lyu, Q., Chu, S., & Gong, Q. (2023). Advances and applications on non-Hermitian topological photonics. Nanophotonics, 12(13), 2247–2271. https://doi.org/10.1515/nanoph-2022-0775

Yukawa, H., Kono, H., Ishiwata, H., Igarashi, R., Takakusagi, Y., Arai, S., & Baba, Y. (2025). Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chemical Society Reviews, 54(7), 3293–3322. https://doi.org/10.1039/d4cs00650j

Zahidy, M., Ribezzo, D., Lazzari, C., Vagniluca, I., Biagi, N., Müller, R., & Bacco, D. (2024). Practical high-dimensional quantum key distribution protocol over deployed multicore fiber. Nature Communications, 15(1). https://doi.org/10.1038/s41467-024-45876-x

Downloads

Published

2025-11-12

How to Cite

Irvani, A. I., Ilmianih, R., & Sani, N. K. (2025). Quantum Technologies in Transition: Bridging Infrastructure, Policy, and Practice. Jurnal Fisika Terapan Dan Inovasi Indonesia, 1(1), 14–26. https://doi.org/10.61978/jftii.v1i1.576