Global Challenges in Digital Taxation: Policy, Administration, and Sustainable Development
DOI:
https://doi.org/10.61978/moneta.v3i2.931Keywords:
Digital Taxation, Public Finance, OECD BEPS, Global Regulatory Challenges, Fiscal Sovereignty, International Cooperation, Sustainable DevelopmentAbstract
The rapid expansion of the digital economy challenges traditional tax systems that rely on physical presence. This review synthesizes global regulatory issues of digital taxation and their fiscal implications. OECD initiatives, particularly the BEPS and Two-Pillar Solution, form the basis of reform, though implementation remains uneven. While European states adopt national digital services taxes, countries like India and Indonesia pursue localized strategies. Challenges persist, including limited fiscal capacity, administrative barriers, and legal uncertainties. Despite these obstacles, digital taxation can enhance fiscal sustainability and support development goals. The review emphasizes the need for international cooperation, adaptive policies, and technological innovation. Future research should examine cryptocurrency regulation and links with environmental sustainability.
References
Akpan, M. (2024). Exploring market dynamics: analyzing the correlation between non-fungible tokens, bitcoin, ethereum growth rates, and nasdaq performance. Corporate Governance and Sustainability Review, 8(3), 51-61. https://doi.org/10.22495/cgsrv8i3p4 DOI: https://doi.org/10.22495/cgsrv8i3p4
Balijepalli, N., & Thangaraj, V. (2025). Prediction of cryptocurrency’s price using ensemble machine learning algorithms. European Journal of Management and Business Economics. https://doi.org/10.1108/ejmbe-08-2023-0244 DOI: https://doi.org/10.1108/EJMBE-08-2023-0244
Ballis, A., Δράκος, Κ., Kallandranis, C., Anastasiou, D., & Doan, V. (2025). The impact of covid-19 first wave on cryptocurrencies and g7 stock markets. Journal of Small Business and Enterprise Development. https://doi.org/10.1108/jsbed-12-2023-0582 DOI: https://doi.org/10.1108/JSBED-12-2023-0582
Boido, C., & Aliano, M. (2025). The contribution of cryptocurrencies to portfolio diversification. Investment Management and Financial Innovations, 22(2), 26-35. https://doi.org/10.21511/imfi.22(2).2025.03 DOI: https://doi.org/10.21511/imfi.22(2).2025.03
Bruzgė, R., Černevičienė, J., Šapkauskienė, A., Mačerinskienė, A., Masteika, S., & Driaunys, K. (2023). Stylized facts, volatility dynamics and risk measures of cryptocurrencies. Journal of Business Economics and Management, 24(3), 527-550. https://doi.org/10.3846/jbem.2023.19118 DOI: https://doi.org/10.3846/jbem.2023.19118
Caporale, G., Kang, W., Spagnolo, F., & Spagnolo, N. (2023). Cyber-attacks, cryptocurrencies and cyber security. pp. 347-381. https://doi.org/10.1007/978-3-031-34082-6_14 DOI: https://doi.org/10.1007/978-3-031-34082-6_14
Cheong, C. (2019). Cryptocurrencies vs global foreign exchange risk. The Journal of Risk Finance, 20(4), 330-351. https://doi.org/10.1108/jrf-11-2018-0178 DOI: https://doi.org/10.1108/JRF-11-2018-0178
Chinthapalli, U. (2021). A comparative analysis on probability of volatility clusters on cryptocurrencies, and forex currencies. Journal of Risk and Financial Management, 14(7), 308. https://doi.org/10.3390/jrfm14070308 DOI: https://doi.org/10.3390/jrfm14070308
Chittineni, J. (2025). Cryptocurrency market dynamics: interconnectedness and interdependence with global uncertainties. JAES, 123. https://doi.org/10.57017/jaes.v20.1(87).08 DOI: https://doi.org/10.57017/jaes.v20.1(87).08
de-la-Rica-Escudero, A., Garrido-Merchán, E., & Vaca, M. (2025). Explainable post hoc portfolio management financial policy of a deep reinforcement learning agent. Plos One, 20(1), e0315528. https://doi.org/10.1371/journal.pone.0315528 DOI: https://doi.org/10.1371/journal.pone.0315528
Galvão, R., Varela, J., & Dias, R. (2024). Multifractal behavior of cryptocurrencies during periods of economic uncertainty. Revista De Gestão Social E Ambiental, 18(3), e06616. https://doi.org/10.24857/rgsa.v18n3-107 DOI: https://doi.org/10.24857/rgsa.v18n3-107
Haq, I., Ferreira, P., Quintino, D., Huynh, N., & Samantreeporn, S. (2023). Economic policy uncertainty, energy and sustainable cryptocurrencies: investigating dynamic connectedness during the covid-19 pandemic. Economies, 11(3), 76. https://doi.org/10.3390/economies11030076 DOI: https://doi.org/10.3390/economies11030076
Irfan, M., Rehman, M., Nawazish, S., & Hao, Y. (2023). Performance analysis of gold- and fiat-backed cryptocurrencies: risk-based choice for a portfolio. Journal of Risk and Financial Management, 16(2), 99. https://doi.org/10.3390/jrfm16020099 DOI: https://doi.org/10.3390/jrfm16020099
Kyriazis, Ν., Papadamou, S., Tzeremes, P., & Corbet, S. (2023). The differential influence of social media sentiment on cryptocurrency returns and volatility during covid-19. The Quarterly Review of Economics and Finance, 89, 307-317. https://doi.org/10.1016/j.qref.2022.09.004 DOI: https://doi.org/10.1016/j.qref.2022.09.004
Мaлкина, М., & Ovchinnikov, V. (2020). Cryptocurrency market: overreaction to news and herd instincts. Economic Policy, 15(3), 74-105. https://doi.org/10.18288/1994-5124-2020-3-74-105 DOI: https://doi.org/10.18288/1994-5124-2020-3-74-105
Mehdian, S., Gherghina, Ş., & Stoica, O. (2024). The reaction of top cryptocurrencies to lawsuit against binance: an intraday event study. Studies in Economics and Finance, 42(3), 449-467. https://doi.org/10.1108/sef-08-2024-0521 DOI: https://doi.org/10.1108/SEF-08-2024-0521
Nguyen, L., & Nguyen, P. (2023). Do crypto investors wait and see during policy uncertainty? An examination of the dynamic relationships between policy uncertainty and exchange inflows of bitcoin. Review of Behavioral Finance, 16(2), 234-247. https://doi.org/10.1108/rbf-01-2023-0013 DOI: https://doi.org/10.1108/RBF-01-2023-0013
Păuna, C. (2019). Low risk trading algorithm based on the price cyclicality function for capital markets. Management & Marketing, 14(1), 80-89. https://doi.org/10.2478/mmcks-2019-0006 DOI: https://doi.org/10.2478/mmcks-2019-0006
Pelster, M., Breitmayer, B., & Hasso, T. (2019). Are cryptocurrency traders pioneers or just risk-seekers? Evidence from brokerage accounts. Economics Letters, 182, 98-100. https://doi.org/10.1016/j.econlet.2019.06.013 DOI: https://doi.org/10.1016/j.econlet.2019.06.013
Petti, D., & Sergio, I. (2024). Bank crisis boosts bitcoin price. Journal of Risk and Financial Management, 17(4), 134. https://doi.org/10.3390/jrfm17040134 DOI: https://doi.org/10.3390/jrfm17040134
Qureshi, K., & Zaman, T. (2023). Social media engagement and cryptocurrency performance. Plos One, 18(5), e0284501. https://doi.org/10.1371/journal.pone.0284501 DOI: https://doi.org/10.1371/journal.pone.0284501
Ridwan, E., Wahyuni, M., & Salim, D. (2025). Cbdc news sentiment on the stock market and cryptocurrencies. International Journal of Innovative Research and Scientific Studies, 8(1), 2688-2698. https://doi.org/10.53894/ijirss.v8i1.5043 DOI: https://doi.org/10.53894/ijirss.v8i1.5043
Sawhney, R., Agarwal, S., Mittal, V., Rosso, P., Nanda, V., & Chava, S. (2022). Cryptocurrency bubble detection: a new stock market dataset, financial task & hyperbolic models. https://doi.org/10.18653/v1/2022.naacl-main.405 DOI: https://doi.org/10.18653/v1/2022.naacl-main.405
Sonkurt, H., & Altınöz, A. (2021). Cryptocurrency investment: a safe venture or a new type of gambling? Journal of Gambling Issues, (47). https://doi.org/10.4309/jgi.2021.47.8 DOI: https://doi.org/10.4309/jgi.2021.47.8
Sundarasen, S., & Saleem, F. (2025). From tweets to trades: a bibliometric and systematic review of social media’s influence on cryptocurrency. International Journal of Financial Studies, 13(2), 87. https://doi.org/10.3390/ijfs13020087 DOI: https://doi.org/10.3390/ijfs13020087
Tanrikulu, H., & Pabuçcu, H. (2025). The effect of data types on the performance of machine learning algorithms for cryptocurrency prediction. Computational Economics. https://doi.org/10.1007/s10614-025-10919-y DOI: https://doi.org/10.1007/s10614-025-10919-y
Touhami, K., Abidi, I., Nsaibi, M., & Mejri, M. (2025). Can environmental variables predict cryptocurrency returns? Evidence from bitcoin, ethereum, and tether using a time-varying coefficients vector autoregression model. Risks, 13(4), 72. https://doi.org/10.3390/risks13040072 DOI: https://doi.org/10.3390/risks13040072
Vardar, G., & Aydoğan, B. (2019). Return and volatility spillovers between bitcoin and other asset classes in Turkey. Euromed Journal of Business, 14(3), 209-220. https://doi.org/10.1108/emjb-10-2018-0066 DOI: https://doi.org/10.1108/EMJB-10-2018-0066
Yaâla, S., & Henchiri, J. (2025). Climate risks and cryptocurrency volatility: evidence from crypto market crisis. China Finance Review International. https://doi.org/10.1108/cfri-09-2024-0575 DOI: https://doi.org/10.1108/CFRI-09-2024-0575
Yadav, M. (2024). Behavioral biases of cryptocurrency investors: a prospect theory model to explain cryptocurrency returns. Review of Behavioral Finance, 16(4), 643-667. https://doi.org/10.1108/rbf-07-2023-0172 DOI: https://doi.org/10.1108/RBF-07-2023-0172
Yao, S., Şensoy, A., Nguyen, D., & Li, T. (2022). Investor attention and cryptocurrency market liquidity: a double-edged sword. Annals of Operations Research, 334(1-3), 815-856. https://doi.org/10.1007/s10479-022-04915-w DOI: https://doi.org/10.1007/s10479-022-04915-w



