Smart Health Monitoring Systems for Elderly Populations: Opportunities, Challenges, and Global Perspectives

Authors

  • Fadly Umar Universitas Tadulako
  • Firmansyah Universitas Tadulako
  • Muhammad Rizki Ashari Universitas Tadulako
  • Sadli Syam Universitas Tadulako

DOI:

https://doi.org/10.61978/medicor.v3i4.1092

Keywords:

Smart Health Monitoring Systems, Elderly Care, Wearable Devices, Internet of Things, Artificial Intelligence, Digital Health Adoption, Healthcare Innovation

Abstract

The global increase in elderly populations has intensified demands for innovative healthcare solutions capable of supporting independence, safety, and chronic disease management. This narrative review explores the role of Smart Health Monitoring Systems (SHMS) in addressing these challenges by synthesizing evidence from diverse medical, engineering, and social science literature. A comprehensive search was conducted in PubMed, Scopus, and IEEE Xplore using keywords such as smart health monitoring, elderly, wearable devices, telemedicine, and assistive technology. Inclusion criteria emphasized studies focusing on SHMS for older adults, with both clinical and technical perspectives considered. The results reveal that wearable devices provide reliable monitoring of falls, vital signs, and daily activity, with reported accuracies exceeding 90%. Integration of IoT and AI technologies further enhances predictive capabilities, enabling early detection of health risks and reducing hospital admissions by as much as 30%. However, adoption remains constrained by systemic barriers, including privacy concerns, fragmented health data, limited digital literacy, and infrastructural deficits in developing regions. The discussion highlights the need for coordinated strategies involving improved digital infrastructure, user education, policy incentives, and interoperability frameworks to overcome these challenges. This review concludes that SHMS represent a transformative innovation for elderly care, but their full potential will only be realized through inclusive design, robust policy support, and culturally sensitive adaptation across diverse healthcare contexts.

References

Abidi, M., Umer, U., Mian, S., & Al‐Ahmari, A. (2023). Big data-based smart health monitoring system: using deep ensemble learning. IEEE Access, 11, 114880-114903. https://doi.org/10.1109/access.2023.3325323 DOI: https://doi.org/10.1109/ACCESS.2023.3325323

Abril-Jiménez, P., Lacal, J., Pérez, S., Páramo, M., Colomer, J., & Arredondo, M. (2019). Ageing-friendly cities for assessing older adults’ decline: IoT-based system for continuous monitoring of frailty risks using smart city infrastructure. Aging Clinical and Experimental Research, 32(4), 663-671. https://doi.org/10.1007/s40520-019-01238-y DOI: https://doi.org/10.1007/s40520-019-01238-y

Ahmed, S., Irfan, S., Kiran, N., Masood, N., Anjum, N., & Ramzan, N. (2023). Remote health monitoring systems for elderly people: a survey. Sensors, 23(16), 7095. https://doi.org/10.3390/s23167095 DOI: https://doi.org/10.3390/s23167095

Al-Khafajiy, M., Baker, T., Chalmers, C., Asim, M., Kolivand, H., Fahim, M., … & Waraich, A. (2019). Remote health monitoring of elderly through wearable sensors. Multimedia Tools and Applications, 78(17), 24681-24706. https://doi.org/10.1007/s11042-018-7134-7 DOI: https://doi.org/10.1007/s11042-018-7134-7

Alberdi, A., Weakley, A., Goenaga, A., Schmitter‐Edgecombe, M., & Cook, D. (2018). Automatic assessment of functional health decline in older adults based on smart home data. Journal of Biomedical Informatics, 81, 119-130. https://doi.org/10.1016/j.jbi.2018.03.009 DOI: https://doi.org/10.1016/j.jbi.2018.03.009

Al-Shaqi, R., Mourshed, M., & Rezgui, Y. (2016). Progress in ambient assisted systems for independent living by the elderly. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-2272-8 DOI: https://doi.org/10.1186/s40064-016-2272-8

Alsadoon, A., Al‐Naymat, G., & Jerew, O. (2024). An architectural framework of elderly healthcare monitoring and tracking through wearable sensor technologies. Multimedia Tools and Applications, 83(26), 67825-67870. https://doi.org/10.1007/s11042-024-18177-0 DOI: https://doi.org/10.1007/s11042-024-18177-0

Benammar, M., Abdaoui, A., Ahmad, S., Touati, F., & Kadri, A. (2018). A modular IoT platform for real-time indoor air quality monitoring. Sensors, 18(2), 581. https://doi.org/10.3390/s18020581 DOI: https://doi.org/10.3390/s18020581

Bradford, D., Kasteren, Y., Zhang, Q., & Karunanithi, M. (2017). Watching over me: positive, negative and neutral perceptions of in-home monitoring held by independent-living older residents in an Australian pilot study. Ageing and Society, 38(7), 1377-1398. https://doi.org/10.1017/s0144686x1700006x DOI: https://doi.org/10.1017/S0144686X1700006X

Calatrava-Nicolás, F., Maestro, E., Bautista‐Salinas, D., Ortiz, F., González, J., Vera-Repullo, J., … & Mozos, Ó. (2021). Robotic-based well-being monitoring and coaching system for the elderly in their daily activities. Sensors, 21(20), 6865. https://doi.org/10.3390/s21206865 DOI: https://doi.org/10.3390/s21206865

Cardoso, R., Postolache, O., & Coutinho, C. (2022). Remote health monitoring system for the elderly based on mobile computing and IoT, 132-137. https://doi.org/10.1109/issi55442.2022.9963430 DOI: https://doi.org/10.1109/ISSI55442.2022.9963430

Choi, Y., Park, S., Jun, J., Pyo, C., Cho, K., Lee, H., … & Yu, J. (2021). Deep learning-based stroke disease prediction system using real-time bio signals. Sensors, 21(13), 4269. https://doi.org/10.3390/s21134269 DOI: https://doi.org/10.3390/s21134269

Ciemins, E., Arora, A., Coombs, N., Holloway, B., Mullette, E., Garland, R., … & Coon, P. (2018). Improving blood pressure control using smart technology. Telemedicine Journal and E-Health, 24(3), 222-228. https://doi.org/10.1089/tmj.2017.0028 DOI: https://doi.org/10.1089/tmj.2017.0028

Cruces, A., Jerez, A., Rubio, A., & Bandera, A. (2024). Socially assistive robots in smart environments to attend elderly people—a survey. Applied Sciences, 14(12), 5287. https://doi.org/10.3390/app14125287 DOI: https://doi.org/10.3390/app14125287

Dai, M., Xiao, X., Chen, X., Lin, H., Wu, W., & Chen, S. (2016). A low-power and miniaturized electrocardiograph data collection system with smart textile electrodes for monitoring of cardiac function. Australasian Physical & Engineering Sciences in Medicine, 39(4), 1029-1040. https://doi.org/10.1007/s13246-016-0483-5 DOI: https://doi.org/10.1007/s13246-016-0483-5

Ejaz, M., Kumar, T., Kovacevic, I., Ylianttila, M., & Harjula, E. (2021). Health-blockedge: blockchain-edge framework for reliable low-latency digital healthcare applications. Sensors, 21(7), 2502. https://doi.org/10.3390/s21072502 DOI: https://doi.org/10.3390/s21072502

Fallahzadeh, R., Ghasemzadeh, H., & Shahrokni, A. (2018). Electronic assessment of physical decline in geriatric cancer patients. Current Oncology Reports, 20(3). https://doi.org/10.1007/s11912-018-0670-5 DOI: https://doi.org/10.1007/s11912-018-0670-5

Feng, G. & Li, Q. (2025). The study on innovative development of the elderly care industry under the community-based elderly care model based on the SERVQUAL model. The Open Public Health Journal, 18(1). https://doi.org/10.2174/0118749445370791250203060003 DOI: https://doi.org/10.2174/0118749445370791250203060003

Guo, Y., Guo, J., Shi, X., Yao, Y., Sun, Y., Xia, Y., … & Lip, G. (2020). Mobile health technology-supported atrial fibrillation screening and integrated care: a report from the MAFA-II trial long-term extension cohort. European Journal of Internal Medicine, 82, 105-111. https://doi.org/10.1016/j.ejim.2020.09.024 DOI: https://doi.org/10.1016/j.ejim.2020.09.024

Gupta, G. & Gaur, S. (2022). Remote monitoring and recognition of physical activities of elderly people using smartphone accelerometer sensor data using deep learning models, 963-974. https://doi.org/10.4018/978-1-6684-5295-0.ch052 DOI: https://doi.org/10.4018/978-1-6684-5295-0.ch052

Hasan, N. & Ahmed, M. (2024). Wearable technology for elderly care: integrating health monitoring and emergency alerts. Journal of Computer Networks and Communications, 2024(1). https://doi.org/10.1155/jcnc/5593708 DOI: https://doi.org/10.1155/jcnc/5593708

Ivanovska, O., Tyravska, O., Shtepa, O., Meleha, K., & Fedorenko, T. (2024). Technological innovations in cardiac rehabilitation: effectiveness and impact on patient’s quality of life. Salud Ciencia Y Tecnología, 4, 1329. https://doi.org/10.56294/saludcyt20241329 DOI: https://doi.org/10.56294/saludcyt20241329

Khoi, N., Saguna, S., Mitra, K., & Åhlund, C. (2015). IREHMO: an efficient IoT-based remote health monitoring system for smart regions, 563-568. https://doi.org/10.1109/healthcom.2015.7454565 DOI: https://doi.org/10.1109/HealthCom.2015.7454565

Loreti, D., Chesani, F., Mello, P., Roffia, L., Antoniazzi, F., Cinotti, T., … & Costanzo, A. (2019). Complex reactive event processing for assisted living: the HABITAT project case study. Expert Systems with Applications, 126, 200-217. https://doi.org/10.1016/j.eswa.2019.02.025 DOI: https://doi.org/10.1016/j.eswa.2019.02.025

Lopes, S., Pinho, P., Marques, P., Abreu, C., Carvalho, N., & Ferreira, J. (2021). Contactless smart screening in nursing homes: an IoT-enabled solution for the COVID-19 era, 145-150. https://doi.org/10.1109/wimob52687.2021.9606275 DOI: https://doi.org/10.1109/WiMob52687.2021.9606275

Majumder, S., Mondal, T., & Deen, M. (2017). Wearable sensors for remote health monitoring. Sensors, 17(1), 130. https://doi.org/10.3390/s17010130 DOI: https://doi.org/10.3390/s17010130

Muheidat, F. & Tawalbeh, L. (2020). In-home floor based sensor system-smart carpet- to facilitate healthy aging in place (AIP). IEEE Access, 8, 178627-178638. https://doi.org/10.1109/access.2020.3027535 DOI: https://doi.org/10.1109/ACCESS.2020.3027535

Mshali, H., Lemlouma, T., Moloney, M., & Magoni, D. (2018). A survey on health monitoring systems for health smart homes. International Journal of Industrial Ergonomics, 66, 26-56. https://doi.org/10.1016/j.ergon.2018.02.002 DOI: https://doi.org/10.1016/j.ergon.2018.02.002

Olawade, D. (2025). Urban microclimates and their relationship with social isolation: a review. International Journal of Environmental Research and Public Health, 22(6), 909. https://doi.org/10.3390/ijerph22060909 DOI: https://doi.org/10.3390/ijerph22060909

Raje, V., Jadhav, N., Vatsa, M., Tiwari, A., Singh, S., & Jarag, R. (2024). Utilization of IoT-based healthcare system and vital data monitoring of patients. Research Journal of Pharmacy and Technology, 1590-1594. https://doi.org/10.52711/0974-360x.2024.00251 DOI: https://doi.org/10.52711/0974-360X.2024.00251

Rodrigues, M., Postolache, O., & Cercas, F. (2020). Physiological and behavior monitoring systems for smart healthcare environments: a review. Sensors, 20(8), 2186. https://doi.org/10.3390/s20082186 DOI: https://doi.org/10.3390/s20082186

Vargiu, E. & Zambonelli, F. (2017). Engineering IoT systems through agent abstractions: smart healthcare as a case study, 25-39. https://doi.org/10.1007/978-3-319-70887-4_2 DOI: https://doi.org/10.1007/978-3-319-70887-4_2

Wang, Y. & Deng, T. (2024). Enhancing elderly care: efficient and reliable real-time fall detection algorithm. Digital Health, 10. https://doi.org/10.1177/20552076241233690 DOI: https://doi.org/10.1177/20552076241233690

Wang, Z., Yang, Z., & Dong, T. (2017). A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time. Sensors, 17(2), 341. https://doi.org/10.3390/s17020341 DOI: https://doi.org/10.3390/s17020341

Wu, J., Lu, Y., & Jiang, Y. (2025). An algorithm for mining the living habits of elderly people living alone based on AIoT. Sensors, 25(7), 2299. https://doi.org/10.3390/s25072299 DOI: https://doi.org/10.3390/s25072299

Yang, D., Wang, J., Huang, L., & Wang, T. (2024). Wireless sensor network-based health monitoring and smart home assistance for the older adults in sports and wellness towns. Frontiers in Public Health, 12. https://doi.org/10.3389/fpubh.2024.1399648 DOI: https://doi.org/10.3389/fpubh.2024.1399648

Yoneoka, D., Kawashima, T., Tanoue, Y., Nomura, S., Ejima, K., Shi, S., … & Miyata, H. (2020). Early SNS-based monitoring system for the COVID-19 outbreak in Japan: a population-level observational study. Journal of Epidemiology, 30(8), 362-370. https://doi.org/10.2188/jea.je20200150 DOI: https://doi.org/10.2188/jea.JE20200150

Yoneoka, D., Shi, S., Nomura, S., Tanoue, Y., Kawashima, T., Eguchi, A., … & Miyata, H. (2021). Assessing the regional impact of Japan’s COVID-19 state of emergency declaration: a population-level observational study using social networking services. BMJ Open, 11(2), e042002. https://doi.org/10.1136/bmjopen-2020-042002 DOI: https://doi.org/10.1136/bmjopen-2020-042002

Zhang, Y., Tong, G., & Lin, C. (2024). Home activity recognition for rural elderly based on deep learning and smartphone sensors. Journal of Organizational and End User Computing, 36(1), 1-28. https://doi.org/10.4018/joeuc.345927 DOI: https://doi.org/10.4018/JOEUC.345927

Downloads

Published

2025-10-06

How to Cite

Umar, F., Firmansyah, Ashari, M. R., & Syam, S. (2025). Smart Health Monitoring Systems for Elderly Populations: Opportunities, Challenges, and Global Perspectives. Medicor : Journal of Health Informatics and Health Policy, 3(4), 207–222. https://doi.org/10.61978/medicor.v3i4.1092