The Role of Wearables in Chronic Disease Prevention and Health Promotion
DOI:
https://doi.org/10.61978/medicor.v3i1.1082Keywords:
Wearable Devices, Preventive Health Monitoring, Chronic Disease Management, Cardiovascular Health, Continuous Glucose Monitoring, Digital Health, Elderly CareAbstract
Wearable devices are gaining recognition as vital tools in preventive health monitoring, enabling a shift from reactive to proactive care models. This narrative review synthesizes evidence on the effectiveness of wearables in four key areas: cardiovascular health, diabetes management, general fitness, and elderly care. Findings indicate that wearable ECGs and blood pressure monitors improve early detection of cardiovascular risks and help reduce hospitalizations. Continuous glucose monitoring significantly enhances glycemic control, although access remains unequal between developed and developing countries. Fitness wearables increase physical activity, yet adoption is shaped by socioeconomic and cultural factors. Among elderly populations, wearable technologies support vital sign tracking and emergency detection, contributing to autonomy and safety, though challenges in digital literacy and affordability persist. Despite these benefits, several systemic barriers limit broader impact—particularly data privacy concerns, regulatory fragmentation, interoperability issues, and cost. Addressing these challenges requires integrated policy responses, user-centered design, and equitable access strategies. This review concludes that while wearable devices offer substantial potential for improving population health, realizing their impact depends on resolving critical access and infrastructure gaps, particularly in low-resource settings. Future research should prioritize longitudinal studies and culturally tailored innovations to enhance real-world effectiveness and global scalability.
References
Adepoju, V., Jamil, S., Biswas, M., & Chowdhury, A. (2024). Wearable technology in the management of chronic diseases: a growing concern. Chronic Diseases and Translational Medicine, 11(2), 117-121. https://doi.org/10.1002/cdt3.156 DOI: https://doi.org/10.1002/cdt3.156
Armstrong, D., Najafi, B., & Shahinpoor, M. (2017). Potential applications of smart multifunctional wearable materials to gerontology. Gerontology, 63(3), 287-298. https://doi.org/10.1159/000455011 DOI: https://doi.org/10.1159/000455011
Atalla, S., Amin, S., Kumar, M., Sastry, N., Mansoor, W., & Rao, A. (2022). Autonomous tool for monitoring multi-morbidity health conditions in UAE and India. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.865792 DOI: https://doi.org/10.3389/frai.2022.865792
Bader, A., Rangarajan, A., Reddy, C., Rangarajan, D., & Doss, S. (2025). A transformative role of wearable health devices from sensors to solutions., 277-308. https://doi.org/10.4018/979-8-3373-0690-2.ch009 DOI: https://doi.org/10.4018/979-8-3373-0690-2.ch009
Bashkirtsev, O., Gaevska, V., Bilous, Z., Lysa, L., & Zimba, O. (2023). Remote monitoring for 5P (predictive, preventive, participatory, personalized, and precision) cardiovascular medicine: progress amidst COVID-19 pandemic. Proceedings of the Shevchenko Scientific Society Medical Sciences, 71(1). https://doi.org/10.25040/ntsh2023.01.14 DOI: https://doi.org/10.25040/ntsh2023.01.14
Bassam, N., Hussain, S., Al-Qaraghuli, A., Khan, J., Sumesh, E., & Lavanya, V. (2021). IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19. Informatics in Medicine Unlocked, 24, 100588. https://doi.org/10.1016/j.imu.2021.100588 DOI: https://doi.org/10.1016/j.imu.2021.100588
Brogan, J., Baskaran, I., & Ramachandran, N. (2018). Authenticating health activity data using distributed ledger technologies. Computational and Structural Biotechnology Journal, 16, 257-266. https://doi.org/10.1016/j.csbj.2018.06.004 DOI: https://doi.org/10.1016/j.csbj.2018.06.004
Brunzini, A., Caragiuli, M., Massera, C., & Mandolini, M. (2023). Healthy ageing: a decision-support algorithm for the patient-specific assignment of ICT devices and services. Sensors, 23(4), 1836. https://doi.org/10.3390/s23041836 DOI: https://doi.org/10.3390/s23041836
Canali, S., Schiaffonati, V., & Aliverti, A. (2022). Challenges and recommendations for wearable devices in digital health: data quality, interoperability, health equity, fairness. PLOS Digital Health, 1(10), e0000104. https://doi.org/10.1371/journal.pdig.0000104 DOI: https://doi.org/10.1371/journal.pdig.0000104
Canfell, O., Woods, L., Robins, D., & Sullivan, C. (2024). Consumer health informatics to advance precision prevention. Yearbook of Medical Informatics, 33(01), 149-157. https://doi.org/10.1055/s-0044-1800735 DOI: https://doi.org/10.1055/s-0044-1800735
Chaudhry, M., Kumar, M., Singhal, V., & Srinivasan, B. (2024). Metabolic health tracking using Ultrahuman M1 continuous glucose monitoring platform in non- and pre-diabetic Indians: a multi-armed observational study. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-56933-2 DOI: https://doi.org/10.1038/s41598-024-56933-2
Chen, Y., Ji, M., Wu, Y., Wang, Q., Deng, Y., Liu, Y., … & Zheng, X. (2021). An intelligent individualized cardiovascular app for risk elimination (icare) for individuals with coronary heart disease: development and usability testing analysis. JMIR mHealth and uHealth, 9(12), e26439. https://doi.org/10.2196/26439 DOI: https://doi.org/10.2196/26439
Çelik, Y., İLÇE, E., Mesut, B., & Özsoy, Y. (2024). An overview of wearable medical device applications. Journal of Research in Pharmacy, 28(3), 722-732. https://doi.org/10.29228/jrp.734 DOI: https://doi.org/10.29228/jrp.734
Dobbins, C., Rawassizadeh, R., & Momeni, E. (2017). Detecting physical activity within lifelogs towards preventing obesity and aiding ambient assisted living. Neurocomputing, 230, 110-132. https://doi.org/10.1016/j.neucom.2016.02.088 DOI: https://doi.org/10.1016/j.neucom.2016.02.088
Fahim, M., Sharma, V., & Duong, T. (2022). A wearable-based preventive model to promote oral health through personalized notification., 4282-4285. https://doi.org/10.1109/embc48229.2022.9871128 DOI: https://doi.org/10.1109/EMBC48229.2022.9871128
Fazio, R., Giannoccaro, N., Carrasco, M., Velázquez, R., & Visconti, P. (2021). Wearable devices and IoT applications for symptom detection, infection tracking, and diffusion containment of the COVID-19 pandemic: a survey. Frontiers of Information Technology & Electronic Engineering, 22(11), 1413-1442. https://doi.org/10.1631/fitee.2100085 DOI: https://doi.org/10.1631/FITEE.2100085
Frasier, K., Li, V., Sobotka, M., Vinagolu‐Baur, J., & Herrick, G. (2024). The role of wearable technology in real‐time skin health monitoring. JEADV Clinical Practice, 4(1), 21-29. https://doi.org/10.1002/jvc2.587 DOI: https://doi.org/10.1002/jvc2.587
Ghosh, A., Nag, S., Gomes, A., Gosavi, A., Ghule, G., Kundu, A., … & Srivastava, R. (2022). Applications of smart material sensors and soft electronics in healthcare wearables for better user compliance. Micromachines, 14(1), 121. https://doi.org/10.3390/mi14010121 DOI: https://doi.org/10.3390/mi14010121
Haghi, M., Thurow, K., & Stoll, R. (2017). Wearable devices in medical internet of things: scientific research and commercially available devices. Healthcare Informatics Research, 23(1), 4. https://doi.org/10.4258/hir.2017.23.1.4 DOI: https://doi.org/10.4258/hir.2017.23.1.4
Huang, G. (2025). AI-driven wearable bioelectronics in digital healthcare. Biosensors, 15(7), 410. https://doi.org/10.3390/bios15070410 DOI: https://doi.org/10.3390/bios15070410
Kariasa, I., Koestoer, I., & Juanamasta, I. (2025). Advances in health monitoring technologies: a systematic review of diagnostic precision, patient empowerment, and integration challenges. The Open Biomarkers Journal, 15(1). https://doi.org/10.2174/0118753183373795250212104110 DOI: https://doi.org/10.2174/0118753183373795250212104110
Khaldy, M. (2025). The impact of smartwatches on health and lifestyle: a study on Jordanian society. International Journal of Online and Biomedical Engineering (iJOE), 21(09), 138-152. https://doi.org/10.3991/ijoe.v21i09.54723 DOI: https://doi.org/10.3991/ijoe.v21i09.54723
Kitahama, Y., Egawa, M., Dwivedi, P., Yang, W., & Goda, K. (2024). An emerging tool in healthcare: wearable surface-enhanced Raman spectroscopy. Journal of Physics Photonics, 6(2), 021001. https://doi.org/10.1088/2515-7647/ad38f6 DOI: https://doi.org/10.1088/2515-7647/ad38f6
Kooman, J., Wieringa, F., Han, M., Chaudhuri, S., Sande, F., Usvyat, L., … & Kotanko, P. (2020). Wearable health devices and personal area networks: can they improve outcomes in haemodialysis patients?. Nephrology Dialysis Transplantation, 35(Supplement_2), ii43-ii50. https://doi.org/10.1093/ndt/gfaa015 DOI: https://doi.org/10.1093/ndt/gfaa015
Ma, L., Hou, W., Ji, Z., Sun, Z., Li, M., & Lian, B. (2024). Wearable electrochemical sensor for sweat‐based potassium ion and glucose detection in exercise health monitoring. ChemistryOpen, 13(8). https://doi.org/10.1002/open.202300217 DOI: https://doi.org/10.1002/open.202300217
Maita, K., Maniaci, M., Haider, C., Ávila, F., Torres‐Guzman, R., Borna, S., … & Forte, A. (2024). The impact of digital health solutions on bridging the health care gap in rural areas: a scoping review. The Permanente Journal, 28(3), 130-143. https://doi.org/10.7812/tpp/23.134 DOI: https://doi.org/10.7812/TPP/23.134
Meder, B., Asselbergs, F., & Ashley, E. (2025). Artificial intelligence to improve cardiovascular population health. European Heart Journal, 46(20), 1907-1916. https://doi.org/10.1093/eurheartj/ehaf125 DOI: https://doi.org/10.1093/eurheartj/ehaf125
Miranda-Duro, M., Nieto-Riveiro, L., Concheiro-Moscoso, P., Groba, B., Pousada, T., Canosa, N., … & Pereira, J. (2021). Analysis of older adults in Spanish care facilities, risk of falling and daily activity using Xiaomi Mi Band 2. Sensors, 21(10), 3341. https://doi.org/10.3390/s21103341 DOI: https://doi.org/10.3390/s21103341
Nachman, D., Rahamim, E., Kolben, Y., Mengesha, B., Elbaz‐Greener, G., Amir, O., … & Asleh, R. (2021). In search of clinical impact: advanced monitoring technologies in daily heart failure care. Journal of Clinical Medicine, 10(20), 4692. https://doi.org/10.3390/jcm10204692 DOI: https://doi.org/10.3390/jcm10204692
Piau, A., Charlon, Y., Campo, É., Vellas, B., & Nourhashémi, F. (2015). A smart insole to promote healthy aging for frail elderly individuals: specifications, design, and preliminary results. JMIR Rehabilitation and Assistive Technologies, 2(1), e5. https://doi.org/10.2196/rehab.4084 DOI: https://doi.org/10.2196/rehab.4084
Schütz, N., Saner, H., Botros, A., Pais, B., Santschi, V., Buluschek, P., … & Nef, T. (2021). Contactless sleep monitoring for early detection of health deteriorations in community-dwelling older adults: exploratory study. JMIR mHealth and uHealth, 9(6), e24666. https://doi.org/10.2196/24666 DOI: https://doi.org/10.2196/24666
Sharma, S., Al‐Wanain, M., Alowaidi, M., & Alsaghier, H. (2022). Mobile healthcare (m‐health) based on artificial intelligence in healthcare 4.0. Expert Systems, 41(6). https://doi.org/10.1111/exsy.13025 DOI: https://doi.org/10.1111/exsy.13025
Singh, B. (2025). Sensors and wearable technologies., 347-360. https://doi.org/10.4018/979-8-3693-8774-0.ch017 DOI: https://doi.org/10.4018/979-8-3693-8774-0.ch017
Singh, B. (2025). Empowering sensors and wearable technologies in gauging healthcare transforming digital health technologies., 517-534. https://doi.org/10.4018/979-8-3373-0081-8.ch021 DOI: https://doi.org/10.4018/979-8-3373-0081-8.ch021
Tseng, R., Chen, C., Hsu, S., & Chuang, H. (2018). Contact-lens biosensors. Sensors, 18(8), 2651. https://doi.org/10.3390/s18082651 DOI: https://doi.org/10.3390/s18082651
Walinjkar, A., & Woods, J. (2017). ECG classification and prognostic approach towards personalized healthcare. https://doi.org/10.1109/socialmedia.2017.8057360 DOI: https://doi.org/10.1109/SOCIALMEDIA.2017.8057360
Xu, H., Xiang, J., Lu, Y., Zhang, M., Li, J., Gao, B., … & Gu, Z. (2018). Multifunctional wearable sensing devices based on functionalized graphene films for simultaneous monitoring of physiological signals and volatile organic compound biomarkers. ACS Applied Materials & Interfaces, 10(14), 11785-11793. https://doi.org/10.1021/acsami.8b00073 DOI: https://doi.org/10.1021/acsami.8b00073
Zhao, Z., Yang, C., & Li, D. (2024). Skin electrodes based on TPU fiber scaffolds with conductive nanocomposites with stretchability, breathability, and washability. Micromachines, 15(5), 598. https://doi.org/10.3390/mi15050598 DOI: https://doi.org/10.3390/mi15050598



