The Impact of Urban Traffic Congestion on the Operational Costs of Logistics Transportation in Bogor City

Authors

  • Genny Luhung Prasojo Akademi Penerbang Indonesia Banyuwangi
  • Ahmad Hariri Politeknik Penerbangan Palembang
  • Zaenal Abidin Institut Transportasi dan Logistik Trisakti

DOI:

https://doi.org/10.61978/logistica.v2i2.702

Keywords:

Urban Logistics, Traffic Congestion, Operational Cost, Urban Freight Efficiency, Indonesia Logistics Planning

Abstract

Urban traffic congestion is a major challenge for logistics efficiency, particularly in rapidly growing cities like Bogor, Indonesia. This study aims to quantify the impact of traffic congestion on logistics operational costs by analyzing congestion levels and cost components in urban freight transport. A quantitative approach was used, involving 50 logistics fleet respondents from Bogor. Primary data were collected through structured questionnaires measuring daily congestion duration, travel time, average speed, fuel consumption, driver wages, and vehicle maintenance costs. Statistical analysis was conducted using simple linear regression. The results reveal that logistics vehicles experience approximately 95 minutes of congestion daily, with travel speeds reduced to 13.5 km/h. The study finds a strong, positive, and statistically significant relationship between congestion and logistics costs (regression coefficient = 0.674, p < 0.001), with congestion explaining 45.5% of cost variation. Increased fuel consumption, labor costs, and maintenance expenses are the main contributors to operational inefficiencies. These findings underscore how urban congestion increases the cost to serve and diminishes logistics reliability. The study suggests that policymakers adopt adaptive strategies such as smart routing, freight dedicated lanes, and urban consolidation centers. It also calls for greater integration of logistics planning in urban transport systems to enhance resilience and sustainability. These findings contribute to the growing discourse on urban freight efficiency in Southeast Asian cities.

References

Albalate, D., & Fageda, X. (2019). Congestion, Road Safety, and the Effectiveness of Public Policies in Urban Areas. Sustainability, 11(18), 5092. https://doi.org/10.3390/su11185092 DOI: https://doi.org/10.3390/su11185092

Aprilia, Z. Z. (2024). Quality Perception of Spotify’s Purchase Intentions in Indonesia. Jurnal Indonesia Sosial Teknologi, 5(5), 2004–2014. https://doi.org/10.59141/jist.v5i5.1061 DOI: https://doi.org/10.59141/jist.v5i5.1061

Bigazzi, A., & Figliozzi, M. (2011). The Impacts of Stochastic Capacity on Freeway Traffic Flow Benefits and Costs: A Model and a Case Study From Portland, Oregon. https://doi.org/10.1109/fists.2011.5973613 DOI: https://doi.org/10.1109/FISTS.2011.5973613

Bokor, Z. (2010). Cost Drivers in Transport and Logistics. Periodica Polytechnica Transportation Engineering, 38(1), 13. https://doi.org/10.3311/pp.tr.2010-1.03 DOI: https://doi.org/10.3311/pp.tr.2010-1.03

Bokor, Z. (2012). Elaborating Cost and Performance Management Methods in Transport. Promet - Traffic&transportation, 21(3), 217–224. https://doi.org/10.7307/ptt.v21i3.228 DOI: https://doi.org/10.7307/ptt.v21i3.228

Bosona, T. (2020). Urban Freight Last Mile Logistics—Challenges and Opportunities to Improve Sustainability: A Literature Review. Sustainability, 12(21), 8769. https://doi.org/10.3390/su12218769 DOI: https://doi.org/10.3390/su12218769

Buyukeren, A. C., & Hiramatsu, T. (2015). Anti-Congestion Policies in Cities With Public Transportation. Journal of Economic Geography, 16(2), 395–421. https://doi.org/10.1093/jeg/lbu051 DOI: https://doi.org/10.1093/jeg/lbu051

Dikshit, S., Atiq, A., Shahid, M., Dwivedi, V., & Thusu, A. (2023). The Use of Artificial Intelligence to Optimize the Routing of Vehicles and Reduce Traffic Congestion in Urban Areas. Eai Endorsed Transactions on Energy Web, 10. https://doi.org/10.4108/ew.4613 DOI: https://doi.org/10.4108/ew.4613

Dong, W., Zhou, C., Rou, K., Wu, Z., Chen, J., Scott, S. R., Jia, M., Zhou, Y., & Chen, X. (2019). A Community-Based Comprehensive Intervention to Reduce Syphilis Infection Among Low-Fee Female Sex Workers in China: A Matched-Pair, Community-Based Randomized Study. Infectious Diseases of Poverty, 8(1). https://doi.org/10.1186/s40249-019-0611-z DOI: https://doi.org/10.1186/s40249-019-0611-z

Fu, W., Gu, D., & Chen, A. (2022). Analysis of Traffic Operation Characteristics and Calculation Model of the Length of the Connecting Section Between Ramp and Intersection. Sustainability, 14(2), 629. https://doi.org/10.3390/su14020629 DOI: https://doi.org/10.3390/su14020629

Hammam, M. N., R, M., N.A., o, & Novriani, S. (2024). Potential Application of Electronic Road Pricing (ERP) on Bandung City Roads. Journal of World Science, 3(10), 1340–1350. https://doi.org/10.58344/jws.v3i10.1215 DOI: https://doi.org/10.58344/jws.v3i10.1215

Helmi, S., & Wahab, W. ’. (2023). Traffic Congestion Effect on Socio-Economic of Road Users in Palembang City. 80–90. https://doi.org/10.2991/978-2-38476-072-5_9 DOI: https://doi.org/10.2991/978-2-38476-072-5_9

Hopkins, J., & Hawking, P. (2018). Big Data Analytics and IoT in Logistics: A Case Study. The International Journal of Logistics Management, 29(2), 575–591. https://doi.org/10.1108/ijlm-05-2017-0109 DOI: https://doi.org/10.1108/IJLM-05-2017-0109

Kii, M., Goda, Y., Vichiensan, V., Miyazaki, H., & Moeckel, R. (2021). Assessment of Spatiotemporal Peak Shift of Intra-Urban Transportation Taking a Case in Bangkok, Thailand. Sustainability, 13(12), 6777. https://doi.org/10.3390/su13126777 DOI: https://doi.org/10.3390/su13126777

Kusnadi, D., & Siregar, H. (2021). Dampak Kemacetan Lalu Lintas terhadap Waktu Tempuh Distribusi Barang di Jabodetabek. Jurnal Logistik Dan Transportasi, 12(1), 45–56. https://doi.org/10.14710/jlt.v12i1.24567

Levy, J. I., Buonocore, J. J., & Stackelberg, K. v. (2010). Evaluation of the Public Health Impacts of Traffic Congestion: A Health Risk Assessment. Environmental Health, 9(1). https://doi.org/10.1186/1476-069x-9-65 DOI: https://doi.org/10.1186/1476-069X-9-65

Li, N., Ma, T., & Deng, X. ‐F. (2024). Analysis of the Coupling Degree Between Regional Logistics Efficiency and Economic Development Coordination. Plos One, 19(1), e0293175. https://doi.org/10.1371/journal.pone.0293175 DOI: https://doi.org/10.1371/journal.pone.0293175

Liu, W., Liu, J., Peng, J., & Zhu, Z. (2014). Cooperative Multi-Agent Traffic Signal Control System Using Fast Gradient-Descent Function Approximation for V2I Networks. 2562–2567. https://doi.org/10.1109/icc.2014.6883709 DOI: https://doi.org/10.1109/ICC.2014.6883709

Louf, R., & Barthélemy, M. (2014). How Congestion Shapes Cities: From Mobility Patterns to Scaling. Scientific Reports, 4(1). https://doi.org/10.1038/srep05561 DOI: https://doi.org/10.1038/srep05561

Mahardika, P., & Susanto, A. (2022). Analisis Pengaruh Kemacetan terhadap Biaya Logistik di Wilayah Metropolitan Bandung. Jurnal Riset Operasi Dan Logistik, 7(3), 55–65. https://doi.org/10.22146/jrol.v7i3.67892

Meirinawati, M., Rahaju, T., & Pradana, G. W. (2021). Ecology-Based Sustainable Transportation System Development in Surabaya: Models and Strategies. https://doi.org/10.4108/eai.21-10-2020.2311913 DOI: https://doi.org/10.4108/eai.21-10-2020.2311913

Michelle, A., & Susilo, D. (2021). The Effect of Instagram Social Media Exposure on Purchase Decision. Ettisal Journal of Communication, 6(1), 36. https://doi.org/10.21111/ejoc.v6i1.6242 DOI: https://doi.org/10.21111/ejoc.v6i1.6242

Muazam, A., Widyayanti, S., Kristamtini, K., & Daryono, B. S. (2024). The Stepwise Regression Analysis Method for Estimating Sorghum Production in Karangmojo. Iop Conference Series Earth and Environmental Science, 1377(1), 012099. https://doi.org/10.1088/1755-1315/1377/1/012099 DOI: https://doi.org/10.1088/1755-1315/1377/1/012099

Mukti, I. Y., & Prambudia, Y. (2018). Challenges in Governing the Digital Transportation Ecosystem in Jakarta: A Research Direction in Smart City Frameworks. Challenges, 9(1), 14. https://doi.org/10.3390/challe9010014 DOI: https://doi.org/10.3390/challe9010014

Murata, A., & Naitoh, K. (2015). Multinomial Logistic Regression Model for Predicting Driver’s Drowsiness Using Only Behavioral Measures. Journal of Traffic and Transportation Engineering, 3(2). https://doi.org/10.17265/2328-2142/2015.02.002 DOI: https://doi.org/10.17265/2328-2142/2015.02.002

ÖNÜR, Z., & KOZİKOĞLU, İ. (2020). Ortaokul Öğrencilerinin 21. Yüzyıl Öğrenme Becerileri Ile Eğitim Teknolojisi Yeterlikleri Arasındaki İlişki. Kuramsal Eğitimbilim, 13(1), 65–77. https://doi.org/10.30831/akukeg.535491 DOI: https://doi.org/10.30831/akukeg.535491

Prabowo, A. D., & Kartika, M. (2022). Dampak Pandemi dan Kemacetan terhadap Efisiensi Biaya Operasional Usaha Logistik Skala Menengah. Jurnal Ekonomi Dan Bisnis Terapan, 14(1), 77–89. https://doi.org/10.31294/jebt.v14i1.78945

Rakhmatullah, A. R., Dewi, D. I. K., & Wahyono, H. (2024). Unlocking Mobility: A Sustainable Approach to Semarang’s Intermodal Transport. Iop Conference Series Earth and Environmental Science, 1394(1), 012033. https://doi.org/10.1088/1755-1315/1394/1/012033 DOI: https://doi.org/10.1088/1755-1315/1394/1/012033

Rodrigue, J. P., Comtois, C., & Slack, B. (2020). The Geography of Transport Systems (5th ed.). Routledge. https://transportgeography.org/?page_id=5

Šemanjski, I., & Gautama, S. (2019). A Collaborative Stakeholder Decision-Making Approach for Sustainable Urban Logistics. Sustainability, 11(1), 234. https://doi.org/10.3390/su11010234 DOI: https://doi.org/10.3390/su11010234

Škultéty, F., Beňová, D., & Gnap, J. (2021). City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals. Sustainability, 13(7), 3641. https://doi.org/10.3390/su13073641 DOI: https://doi.org/10.3390/su13073641

Sweet, M. N. (2013). Traffic Congestion’s Economic Impacts: Evidence From US Metropolitan Regions. Urban Studies, 51(10), 2088–2110. https://doi.org/10.1177/0042098013505883 DOI: https://doi.org/10.1177/0042098013505883

Taylor, J., Casavant, K., Sage, J. L., Moore, D. L., & Ivanov, B. (2013). The Economic Impact of Increased Congestion for Freight-Dependent Businesses in Washington State. Journal of the Transportation Research Forum. https://doi.org/10.5399/osu/jtrf.52.3.4195 DOI: https://doi.org/10.5399/osu/jtrf.52.3.4195

Uzawa, H., Takeuch, S., & Nishida, Y. (2024). Sex Differences in Conditioned Pain Modulation Effects and Its Associations With Autonomic Nervous System Activities in Healthy, Younger Individuals: A Pilot Study. Pain Reports, 9(2), e1123. https://doi.org/10.1097/pr9.0000000000001123 DOI: https://doi.org/10.1097/PR9.0000000000001123

Vichiensan, V., Wasuntarasook, V., Hayashi, Y., Kii, M., & Prakayaphun, T. (2021). Urban Rail Transit in Bangkok: Chronological Development Review and Impact on Residential Property Value. Sustainability, 14(1), 284. https://doi.org/10.3390/su14010284 DOI: https://doi.org/10.3390/su14010284

Yu-hui, G., Tang, Z., & Guo, J. (2020). Could a Smart City Ameliorate Urban Traffic Congestion? A Quasi-Natural Experiment Based on a Smart City Pilot Program in China. Sustainability, 12(6), 2291. https://doi.org/10.3390/su12062291 DOI: https://doi.org/10.3390/su12062291

Yuliana, D. (2020). Efek Kemacetan terhadap Biaya Perawatan Kendaraan Niaga di Area Perkotaan Padat. Jurnal Teknik Mesin Dan Transportasi, 15(4), 234–241. https://doi.org/10.24843/jtmt.v15i4.34722

Zhang, H. (2023). E-Commerce Enterprise Brand Image, Seller’s Reputation and Consumers’ Purchasing Intention: Basis for Online Buying Platform Improvement Framework. International Journal of Research Studies in Management, 11(6). https://doi.org/10.5861/ijrsm.2023.1071 DOI: https://doi.org/10.5861/ijrsm.2023.1071

Zheng, J., & Huang, M.-F. (2020). Traffic Flow Forecast Through Time Series Analysis Based on Deep Learning. Ieee Access, 8, 82562–82570. https://doi.org/10.1109/access.2020.2990738 DOI: https://doi.org/10.1109/ACCESS.2020.2990738

Downloads

Published

2024-04-30

How to Cite

Prasojo, G. L., Hariri, A., & Abidin, Z. (2024). The Impact of Urban Traffic Congestion on the Operational Costs of Logistics Transportation in Bogor City. Logistica : Journal of Logistic and Transportation, 2(2), 115–128. https://doi.org/10.61978/logistica.v2i2.702

Issue

Section

Articles