Redefining Speed and Stability: A Meta Analysis of CI/CD Performance through DORA Metrics
DOI:
https://doi.org/10.61978/digitus.v3i1.952Keywords:
CI/CD, DevOps, DORA Metrics, Software Delivery, Deployment Frequency, MTTR, Change Failure Rate, GitOps, Platform EngineeringAbstract
Continuous Integration and Delivery (CI/CD) has transformed modern software development, enabling faster, more reliable delivery cycles. This article investigates the impact of CI/CD on software delivery speed and stability through a meta analytical review of benchmark studies and industry metrics, with a focus on the DORA framework’s Four Key Metrics: Deployment Frequency, Lead Time for Changes, Change Failure Rate (CFR), and Mean Time to Recovery (MTTR). Utilizing data from DORA, CircleCI, GitLab, and other industry reports, the study applies systematic methods to compare elite and non elite performance bands. Results indicate that mature CI/CD implementation significantly enhances deployment frequency and reduces lead times, while simultaneously improving system stability through lower CFR and faster recovery times. Elite performers exemplify how frequent, stable deployments can be achieved through automation, observability, and standardized tooling. Industry-wide evidence indicates that these principles are broadly applicable across various organizational contexts. Discussion highlights existing barriers to CI/CD adoption, including legacy infrastructure, cultural inertia, and toolchain fragmentation. To address these, the article emphasizes the role of GitOps and platform engineering in streamlining CI/CD operations. Emerging trends such as AI integration, Software Bill of Materials (SBOM), and advanced observability are also identified as future enablers of delivery excellence. In conclusion, CI/CD maturity is strongly correlated with elite performance in software delivery. DORA metrics offer a reliable framework for assessment and continuous improvement. Organizations seeking to scale their DevOps effectiveness must align their practices with these benchmarks while leveraging emerging tools and cultural strategies to sustain delivery excellence.
References
Alamin, Z. (2025). Evolving DevOps Practices in Modern Software Engineering: Trends, Challenges, and Impacts on Quality and Delivery Performance. Journix: J. Inform. Comput., 1(1), 21–29. https://doi.org/10.63866/journix.v1i1.4 DOI: https://doi.org/10.63866/journix.v1i1.4
Ali, J. M. (2023). DevOps and Continuous Integration/Continuous Deployment (CI/CD) Automation. Aei, 4(1), 38–42. https://doi.org/10.54254/2977-3903/4/2023031 DOI: https://doi.org/10.54254/2977-3903/4/2023031
Alvin, M., & Aji, R. F. (2023). DevOps Implementation With Enterprise on-Premise Infrastructure. Jurnal Media Informatika Budidarma, 7(1), 331. https://doi.org/10.30865/mib.v7i1.5500 DOI: https://doi.org/10.30865/mib.v7i1.5500
Chinnam, S. K., & Karanam, R. (2023). Federated DevOps: A Privacy-Enhanced Model for CI/CD Pipelines in Multi-Tenant Cloud Environments. International Journal of Scientific Research in Computer Science Engineering and Information Technology, 465–474. https://doi.org/10.32628/cseit23112547 DOI: https://doi.org/10.32628/CSEIT23112547
Dhaliwal, A. S. (2022). Artificial Intelligence in Managing Artifacts and Binaries in CI/CD. Design of Single Chip Microcomputer Control System for Stepping Motor, 1(1), 1–3. https://doi.org/10.47363/jaicc/2022(1)340 DOI: https://doi.org/10.47363/JAICC/2022(1)340
Diwan, P. D. (2025). Mastering Cloud Platform Engineering With Key Modern Concepts. Global Journal of Engineering and Technology Advances, 23(1), 058–068. https://doi.org/10.30574/gjeta.2025.23.1.0105 DOI: https://doi.org/10.30574/gjeta.2025.23.1.0105
Donca, I.-C., Stan, O., Misaroş, M., Gota, D.-I., & Miclea, L. (2022). Method for Continuous Integration and Deployment Using a Pipeline Generator for Agile Software Projects. Sensors, 22(12), 4637. https://doi.org/10.3390/s22124637 DOI: https://doi.org/10.3390/s22124637
Erdenebat, B., Bud, B., Batsuren, T., & Kozsik, T. (2023). Multi-Project Multi-Environment Approach—An Enhancement to Existing DevOps and Continuous Integration and Continuous Deployment Tools. Computers, 12(12), 254. https://doi.org/10.3390/computers12120254 DOI: https://doi.org/10.3390/computers12120254
Erich, F., Amrit, C., & Daneva, M. (2017). A Qualitative Study of DevOps Usage in Practice. Journal of Software Evolution and Process, 29(6). https://doi.org/10.1002/smr.1885 DOI: https://doi.org/10.1002/smr.1885
Fantom, W., Davies, E., Rotsos, C., Veitch, P., Cassidy, S., & Race, N. (2023). NES: Towards Lifecycle Automation for Emulation-Based Experimentation. https://doi.org/10.1109/noms56928.2023.10154268 DOI: https://doi.org/10.1109/NOMS56928.2023.10154268
Fernandes, A., Afonso, J., Noronha, F., Mezêncio, B., Vilas‐Boas, J. P., & Fernandes, R. J. (2023). Intracycle Velocity Variation in Swimming: A Systematic Scoping Review. Bioengineering, 10(3), 308. https://doi.org/10.3390/bioengineering10030308 DOI: https://doi.org/10.3390/bioengineering10030308
Gallaba, K. (2019). Improving the Robustness and Efficiency of Continuous Integration and Deployment. https://doi.org/10.1109/icsme.2019.00099 DOI: https://doi.org/10.1109/ICSME.2019.00099
Krey, M. (2022). DevOps Adoption: Challenges &Amp; Barriers. https://doi.org/10.24251/hicss.2022.877 DOI: https://doi.org/10.24251/HICSS.2022.877
Kumar, A., Nadeem, M., & Shameem, M. (2023). Multicriteria Decision‐making–based Framework for Implementing DevOps Practices: A Fuzzy Best–worst Approach. Journal of Software Evolution and Process, 36(6). https://doi.org/10.1002/smr.2631 DOI: https://doi.org/10.1002/smr.2631
Luo, W., Tian, Z., Zhong, S., Lyu, Q., & Deng, M. (2022). Global Evolution of Research on Sustainable Finance From 2000 to 2021: A Bibliometric Analysis on WoS Database. Sustainability, 14(15), 9435. https://doi.org/10.3390/su14159435 DOI: https://doi.org/10.3390/su14159435
Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., Kuvaja, P., Mikkonen, T., Oivo, M., & Lassenius, C. (2019). DevOps in Practice: A Multiple Case Study of Five Companies. Information and Software Technology, 114, 217–230. https://doi.org/10.1016/j.infsof.2019.06.010 DOI: https://doi.org/10.1016/j.infsof.2019.06.010
Miriyala, N. S., Bandaru, B. K., Mittal, P., Macha, K. B., Venkat, R. S., & Rai, A. (2025). Impact of Cloud-Native CI/CD Pipelines on Deployment Efficiency in Enterprise Software. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.2384 DOI: https://doi.org/10.22399/ijcesen.2384
Modalavalasa, G. (2021). The Role of DevOps in Streamlining Software Delivery: Key Practices for Seamless CI/CD. International Journal of Advanced Research in Science Communication and Technology, 258–267. https://doi.org/10.48175/ijarsct-8978c DOI: https://doi.org/10.48175/IJARSCT-8978C
Mokkapati, C., Jain, S. K., & Pandian, P. K. G. (2023). Implementing CI/CD in Retail Enterprises: Leadership Insights for Managing Multi-Billion Dollar Projects. Innovative Research Thoughts, 9(1), 391–405. https://doi.org/10.36676/irt.v9.i1.1458 DOI: https://doi.org/10.36676/irt.v9.i1.1458
Ochuba, N. A., Kisina, D., Adanigbo, O. S., Uzoka, A., Akpe, O. E., & Gbenle, T. P. (2023). Systematic Review of Infrastructure as Code (IaC) and GitOps for Cloud Automation and Governance. International Journal of Multidisciplinary Research and Growth Evaluation, 4(2), 664–670. https://doi.org/10.54660/.ijmrge.2023.3.2.664-670 DOI: https://doi.org/10.54660/.IJMRGE.2023.3.2.664-670
Pereira, I. M., Carneiro, T., & Figueiredo, E. (2025). Manipulating a CI/CD Pipeline in an IoT Embedded Project: A Quasi‐Experiment. Journal of Software Evolution and Process, 37(4). https://doi.org/10.1002/smr.70022 DOI: https://doi.org/10.1002/smr.70022
Rajasinghe, M. (2021). Adoption Challenges of CI/CD Methodology in Software Development Teams. https://doi.org/10.36227/techrxiv.16681957.v1 DOI: https://doi.org/10.36227/techrxiv.16681957.v1
Ramadugu, G. (2024). Leveraging AI for Continuous Integration and Delivery Enhancing Developer Productivity in Smart Education and Sustainable Learning. 287–300. https://doi.org/10.4018/979-8-3693-7723-9.ch017 DOI: https://doi.org/10.4018/979-8-3693-7723-9.ch017
Scharfen, H., & Memmert, D. (2019). Measurement of Cognitive Functions in Experts and Elite Athletes: A Meta‐analytic Review. Applied Cognitive Psychology, 33(5), 843–860. https://doi.org/10.1002/acp.3526 DOI: https://doi.org/10.1002/acp.3526
Senapathi, M., Buchan, J., & Osman, H. (2018). DevOps Capabilities, Practices, and Challenges. 57–67. https://doi.org/10.1145/3210459.3210465 DOI: https://doi.org/10.1145/3210459.3210465
Singh, C. (2025). The Role of RPA in Transforming DevOps: Driving CI/CD Efficiency and Beyond. Interantional Journal of Scientific Research in Engineering and Management, 09(01), 1–6. https://doi.org/10.55041/ijsrem8160 DOI: https://doi.org/10.55041/IJSREM8160
Sobhani, V., Rostamizadeh, M., Hosseini, S. M., Hashemi, S. E., Refoyo, I., & Mon‐López, D. (2022). Anthropometric, Physiological, and Psychological Variables That Determine the Elite Pistol Performance of Women. International Journal of Environmental Research and Public Health, 19(3), 1102. https://doi.org/10.3390/ijerph19031102 DOI: https://doi.org/10.3390/ijerph19031102
Thatikonda, V. (2023). Beyond the Buzz: A Journey Through CI/CD Principles and Best Practices. European Journal of Theoretical and Applied Sciences, 1(5), 334–340. https://doi.org/10.59324/ejtas.2023.1(5).24 DOI: https://doi.org/10.59324/ejtas.2023.1(5).24
Vieira, M., Vieira, M. A., Galvão, G., Louro, P., Fantoni, A., Vieira, P., & Véstias, M. (2025). Enhancing Airport Traffic Flow: Intelligent System Based on VLC, Rerouting Techniques, and Adaptive Reward Learning. Sensors, 25(9), 2842. https://doi.org/10.3390/s25092842 DOI: https://doi.org/10.3390/s25092842
Zampetti, F., Vassallo, C., Panichella, S., Canfora, G., Gall, H., & Penta, M. D. (2020). An Empirical Characterization of Bad Practices in Continuous Integration. Empirical Software Engineering, 25(2), 1095–1135. https://doi.org/10.1007/s10664-019-09785-8 DOI: https://doi.org/10.1007/s10664-019-09785-8
Θεοδωρόπουλος, Θ., Rosa, L., Benzaıd, C., Gray, P., Marin, E., Makris, A., Cordeiro, L., Diego, F., Сорокин, П., Girolamo, M. D., Barone, P., Taleb, T., & Tserpes, K. (2023). Security in Cloud-Native Services: A Survey. Journal of Cybersecurity and Privacy, 3(4), 758–793. https://doi.org/10.3390/jcp3040034 DOI: https://doi.org/10.3390/jcp3040034


