Latency Aware Edge Architectures for Industrial IoT: Design Patterns and Deterministic Networking Integration

Authors

  • Muhammad Alfathan Harriz Universitas Matana

DOI:

https://doi.org/10.61978/digitus.v3i3.958

Keywords:

Edge Computing, Industrial IoT, Latency Budget, TSN, OPC UA, MQTT Sparkplug, 5G URLLC, Real Time Automation

Abstract

This study explores the design patterns and latency budgets required for real time performance in edge based Industrial Internet of Things (IIoT) systems. As industrial applications increasingly demand ultra low latency for control loops and automation tasks, cloud computing architectures fall short in meeting strict timing requirements. The research investigates architectural configurations such as on premises edge computing, hybrid edge↔cloud frameworks, and 5G Multi access Edge Computing (MEC), all integrated with deterministic networking technologies like Time Sensitive Networking (TSN). The methodology includes modeling latency partitions across communication, computation, and execution layers, evaluating IIoT protocols such as OPC UA PubSub and MQTT Sparkplug B, and measuring metrics like end to end latency, jitter, and deadline miss percentages under realistic workloads. Results confirm that edge architectures, when combined with TSN and real-time operating environments, can achieve latency budgets as low as approximately 1 millisecond (ms) for servo loops and between 6–12 ms for machine vision tasks. These values highlight the feasibility of meeting industrial automation requirements. The conclusion underscores the importance of matching communication technologies wired TSN versus 5G URLLC according to environmental constraints and specific application requirements. It also emphasizes the role of hybrid architectures and standardized protocols in enabling scalable, interoperable, and deterministic IIoT systems. This work contributes a validated framework for deploying real time industrial systems capable of meeting the performance thresholds of Industry 4.0.

References

Ahn, H., Lee, M., Hong, C.-H., & Varghese, B. (2021). ScissionLite: Accelerating Distributed Deep Neural Networks Using Transfer Layer. https://doi.org/10.48550/arxiv.2105.02019

Avasalcai, C., Zarrin, B., & Dustdar, S. (2022). EdgeFlow—Developing and Deploying Latency-Sensitive IoT Edge Applications. Ieee Internet of Things Journal, 9(5), 3877–3888. https://doi.org/10.1109/jiot.2021.3101449 DOI: https://doi.org/10.1109/JIOT.2021.3101449

Basir, R., Qaisar, S., Ali, M., Aldwairi, M., Ashraf, M. I., Mahmood, A., & Gidlund, M. (2019). Fog Computing Enabling Industrial Internet of Things: State-of-the-Art and Research Challenges. Sensors, 19(21), 4807. https://doi.org/10.3390/s19214807 DOI: https://doi.org/10.3390/s19214807

Caiza, G., Saeteros, M., Oñate, W., & García, M. V. (2020). Fog Computing at Industrial Level, Architecture, Latency, Energy, and Security: A Review. Heliyon, 6(4), e03706. https://doi.org/10.1016/j.heliyon.2020.e03706 DOI: https://doi.org/10.1016/j.heliyon.2020.e03706

Cozzolino, V., Tonetto, L., Mohan, N., Ding, A. Y., & Ott, J. (2023). Nimbus: Towards Latency-Energy Efficient Task Offloading for AR Services. Ieee Transactions on Cloud Computing, 11(2), 1530–1545. https://doi.org/10.1109/tcc.2022.3146615 DOI: https://doi.org/10.1109/TCC.2022.3146615

Eisen, M., Rashid, M. M., Gatsis, K., Cavalcanti, D., Himayat, N., & Ribeiro, A. (2019). Control Aware Radio Resource Allocation in Low Latency Wireless Control Systems. Ieee Internet of Things Journal, 6(5), 7878–7890. https://doi.org/10.1109/jiot.2019.2909198 DOI: https://doi.org/10.1109/JIOT.2019.2909198

Farris, I., Taleb, T., Flinck, H., & Iera, A. (2017). Providing Ultra‐short Latency to User‐centric 5G Applications at the Mobile Network Edge. Transactions on Emerging Telecommunications Technologies, 29(4). https://doi.org/10.1002/ett.3169 DOI: https://doi.org/10.1002/ett.3169

Gomez, D. L., Montoya, G. A., Lozano-Garzón, C., & Donoso, Y. (2023). Strategies for Assuring Low Latency, Scalability and Interoperability in Edge Computing and TSN Networks for Critical IIoT Services. Ieee Access, 11, 42546–42577. https://doi.org/10.1109/access.2023.3268223 DOI: https://doi.org/10.1109/ACCESS.2023.3268223

Huynh, D. V., Nguyen, V., Khosravirad, S. R., Sharma, V., Dobre, O. A., Shin, H., & Duong, T. Q. (2022). URLLC Edge Networks With Joint Optimal User Association, Task Offloading and Resource Allocation: A Digital Twin Approach. Ieee Transactions on Communications, 70(11), 7669–7682. https://doi.org/10.1109/tcomm.2022.3205692 DOI: https://doi.org/10.1109/TCOMM.2022.3205692

Jeddou, S., Fernández, F., Díez, L., Baïna, A., Abdallah, N., & Agüero, R. (2022). Delay and Energy Consumption of MQTT Over QUIC: An Empirical Characterization Using Commercial-Off-the-Shelf Devices. Sensors, 22(10), 3694. https://doi.org/10.3390/s22103694 DOI: https://doi.org/10.3390/s22103694

Jun, S., Kang, Y., Kim, J., & Kim, C. (2020). Ultra‐low‐latency Services in 5G Systems: A Perspective From 3GPP Standards. Etri Journal, 42(5), 721–733. https://doi.org/10.4218/etrij.2020-0200 DOI: https://doi.org/10.4218/etrij.2020-0200

Kang, Y., Lee, S., Gwak, S., Kim, T., & An, D. (2021). Time-Sensitive Networking Technologies for Industrial Automation in Wireless Communication Systems. Energies, 14(15), 4497. https://doi.org/10.3390/en14154497 DOI: https://doi.org/10.3390/en14154497

Kiangala, K. S., & Wang, Z. (2021). An Effective Communication Prototype for Time-Critical IIoT Manufacturing Factories Using Zero-Loss Redundancy Protocols, Time-Sensitive Networking, and Edge-Computing in an Industry 4.0 Environment. Processes, 9(11), 2084. https://doi.org/10.3390/pr9112084 DOI: https://doi.org/10.3390/pr9112084

Liu, Y., Lan, D., Pang, Z., Karlsson, M., & Gong, S. (2021). Performance Evaluation of Containerization in Edge-Cloud Computing Stacks for Industrial Applications: A Client Perspective. Ieee Open Journal of the Industrial Electronics Society, 2, 153–168. https://doi.org/10.1109/ojies.2021.3055901 DOI: https://doi.org/10.1109/OJIES.2021.3055901

Mirani, A. A., Velasco-Hernandez, G., Awasthi, A., & Walsh, J. L. (2022). Key Challenges and Emerging Technologies in Industrial IoT Architectures: A Review. Sensors, 22(15), 5836. https://doi.org/10.3390/s22155836 DOI: https://doi.org/10.3390/s22155836

Moreira, J. B., Mamede, H. S., Pereira, V., & Sousa, B. (2020). Next Generation of Microservices for the 5G Service‐Based Architecture. International Journal of Network Management, 30(6). https://doi.org/10.1002/nem.2132 DOI: https://doi.org/10.1002/nem.2132

Muzaffar, R., Ahmed, M., Sisinni, E., Sauter, T., & Bernhard, H.-P. (2023). 5G Deployment Models and Configuration Choices for Industrial Cyber-Physical Systems – A State of Art Overview. Ieee Transactions on Industrial Cyber-Physical Systems, 1, 236–256. https://doi.org/10.1109/ticps.2023.3311394 DOI: https://doi.org/10.1109/TICPS.2023.3311394

Nakayama, Y., Yaegashi, R., Nguyen, A. H., & Hara–Azumi, Y. (2021). Real-Time Reconfiguration of Time-Aware Shaper for ULL Transmission in Dynamic Conditions. Ieee Access, 9, 115246–115255. https://doi.org/10.1109/access.2021.3105420 DOI: https://doi.org/10.1109/ACCESS.2021.3105420

Nam, S. (2022). The Impact of 5G Multi‐access Edge Computing Cooperation Announcement on the Telecom Operators’ Firm Value. Etri Journal, 44(4), 588–598. https://doi.org/10.4218/etrij.2021-0185 DOI: https://doi.org/10.4218/etrij.2021-0185

Narayanan, S., Prasad, P. V. V., Fritz, A. K., Boyle, D. L., & Gill, B. S. (2014). Impact of High Night‐Time and High Daytime Temperature Stress on Winter Wheat. Journal of Agronomy and Crop Science, 201(3), 206–218. https://doi.org/10.1111/jac.12101 DOI: https://doi.org/10.1111/jac.12101

Nardini, G., Sabella, D., Stea, G., Thakkar, P., & Virdis, A. (2020). Simu5G–An OMNeT++ Library for End-to-End Performance Evaluation of 5G Networks. Ieee Access, 8, 181176–181191. https://doi.org/10.1109/access.2020.3028550 DOI: https://doi.org/10.1109/ACCESS.2020.3028550

Nasrallah, A., Thyagaturu, A. S., Alharbi, Z., Wang, C., Shao, X., Reisslein, M., & Elbakoury, H. (2019). Ultra-Low Latency (ULL) Networks: The IEEE TSN and IETF DetNet Standards and Related 5G ULL Research. Ieee Communications Surveys & Tutorials, 21(1), 88–145. https://doi.org/10.1109/comst.2018.2869350 DOI: https://doi.org/10.1109/COMST.2018.2869350

Peng, Y., Yan, Y., Chen, G., & Feng, B. (2022). Automatic Compact Camera Module Solder Joint Inspection Method Based on Machine Vision. Measurement Science and Technology, 33(10), 105114. https://doi.org/10.1088/1361-6501/ac769a DOI: https://doi.org/10.1088/1361-6501/ac769a

Pham, B. N., Abori, N., Silas, V. D., Jorry, R., Rao, C., Okely, T., & Pomat, W. (2022). Tuberculosis and HIV/AIDS-attributed Mortalities and Associated Sociodemographic Factors in Papua New Guinea: Evidence From the Comprehensive Health and Epidemiological Surveillance System. BMJ Open, 12(6), e058962. https://doi.org/10.1136/bmjopen-2021-058962 DOI: https://doi.org/10.1136/bmjopen-2021-058962

Popovski, P., Nielsen, J. J., Stefanović, Č., Carvalho, E. d., Ström, E. G., Trillingsgaard, K. F., Bana, A.-S., Kim, D. M., Kotaba, R., Park, J., & Sørensen, R. (2018). Wireless Access for Ultra-Reliable Low-Latency Communication: Principles and Building Blocks. Ieee Network, 32(2), 16–23. https://doi.org/10.1109/mnet.2018.1700258 DOI: https://doi.org/10.1109/MNET.2018.1700258

Rico, D., & Merino, P. (2020). A Survey of End-to-End Solutions for Reliable Low-Latency Communications in 5G Networks. Ieee Access, 8, 192808–192834. https://doi.org/10.1109/access.2020.3032726 DOI: https://doi.org/10.1109/ACCESS.2020.3032726

Rincon, D. A., Celik, A. E., Zhang, W., Rodríguez, I., Yavuz, S., & Mogensen, P. (2023). An Operational 5G Edge Cloud-Controlled Robotic Cell Environment Based on MQTT and OPC UA. 7–14. https://doi.org/10.1109/icar58858.2023.10406936 DOI: https://doi.org/10.1109/ICAR58858.2023.10406936

Santos, J., Wauters, T., & Turck, F. D. (2023). Efficient Management in Fog Computing. https://doi.org/10.1109/noms56928.2023.10154219 DOI: https://doi.org/10.1109/NOMS56928.2023.10154219

Sasiain, J., Sanz, A., Astorga, J., & Jacob, E. (2020). Towards Flexible Integration of 5G and IIoT Technologies in Industry 4.0: A Practical Use Case. Applied Sciences, 10(21), 7670. https://doi.org/10.3390/app10217670 DOI: https://doi.org/10.3390/app10217670

Shahri, E., Pedreiras, P., & Almeida, L. (2022). Extending MQTT With Real-Time Communication Services Based on SDN. Sensors, 22(9), 3162. https://doi.org/10.3390/s22093162 DOI: https://doi.org/10.3390/s22093162

Šlapak, E., Gazda, J., Guo, W., Maksymyuk, T., & Döhler, M. (2021). Cost-Effective Resource Allocation for Multitier Mobile Edge Computing in 5G Mobile Networks. Ieee Access, 9, 28658–28672. https://doi.org/10.1109/access.2021.3059029 DOI: https://doi.org/10.1109/ACCESS.2021.3059029

Song, L., Sun, G., Yu, H., & Guizani, M. (2022). SD-AETO: Service Deployment Enabled Adaptive Edge Task Offloading in MEC. https://doi.org/10.48550/arxiv.2205.03081 DOI: https://doi.org/10.1109/JIOT.2023.3281603

Taleb, T., Ksentini, A., & Jäntti, R. (2016). “Anything as a Service” for 5G Mobile Systems. Ieee Network, 30(6), 84–91. https://doi.org/10.1109/mnet.2016.1500244rp DOI: https://doi.org/10.1109/MNET.2016.1500244RP

Thi, M.-T., Guedon, S., Said, S. B. H., Boc, M., Miras, D., Doré, J., Laugeois, M., Popon, X., & Miscopein, B. (2022). IEEE 802.1 TSN Time Synchronization Over Wi-Fi and 5G Mobile Networks. 1–7. https://doi.org/10.1109/vtc2022-fall57202.2022.10012852 DOI: https://doi.org/10.1109/VTC2022-Fall57202.2022.10012852

Varga, P., Pető, J., Frankó, A., Balla, D., Haja, D., Janky, F. N., Soós, G., Ficzere, D., Maliosz, M., & Toka, L. (2020). 5G Support for Industrial IoT Applications—Challenges, Solutions, and Research Gaps. Sensors, 20(3), 828. https://doi.org/10.3390/s20030828 DOI: https://doi.org/10.3390/s20030828

Vicol, A.-D., Yin, B., & Bohté, S. M. (2022). Real-Time Classification of LIDAR Data Using Discrete-Time Recurrent Spiking Neural Networks. 1–9. https://doi.org/10.1109/ijcnn55064.2022.9892006 DOI: https://doi.org/10.1109/IJCNN55064.2022.9892006

Zhou, L., Li, Z., & Konz, N. (2021). Computer Vision Techniques in Manufacturing. https://doi.org/10.36227/techrxiv.17125652.v1 DOI: https://doi.org/10.36227/techrxiv.17125652.v1

Downloads

Published

2025-07-31

How to Cite

Harriz, M. A. (2025). Latency Aware Edge Architectures for Industrial IoT: Design Patterns and Deterministic Networking Integration. Digitus : Journal of Computer Science Applications, 3(3), 164–175. https://doi.org/10.61978/digitus.v3i3.958

Issue

Section

Articles