Analysis of Broiler Chicken Production Success Classification Using K-Nearest Neighbors And Naive Bayes Methods at PT. Jandela Jaga Kaloka (Jajaka)

Authors

  • Tukiyat Universitas Pamulang
  • Sajarwo Anggai Universitas Pamulang
  • Agnia Bilqisti Universitas Pamulang

DOI:

https://doi.org/10.61978/digitus.v2i4.396

Keywords:

K-Nearest Neighbors, Naive Bayes, Data Mining, Classification, Broiler Chickens

Abstract

The livestock subsector, particularly broiler chickens, provides animal protein sources in Indonesia. However, low production efficiency, managerial challenges, and productivity fluctuations remain the primary obstacles to achieving sustainability in this sector. This study aims to analyze the success rate of broiler chicken production at PT. Jandela Jaga Kaloka (JAJAKA) using a data mining classification approach with the K-Nearest Neighbors (K-NN) and Naive Bayes algorithms. The research population comprises broiler production data from various branches of PT. JAJAKA, with a sample of 200 datasets selected based on representative criteria. The study employs the hold-out method with data splits of 60:40 and 70:30 for training and testing the models. The success rate of production is classified into three categories: good, less good, and excellent. The findings reveal that the K-NN algorithm outperforms with an accuracy of 92.59%, compared to Naive Bayes, which achieves 76.67%. Regarding recall, K-NN records a value of 96.67%, higher than Naive Bayes at 71.67%. However, Naive Bayes shows slightly better precision (94.29%) than K-NN (93.55%). These results affirm that the K-NN algorithm is more effective for classifying the success rate of broiler chicken production, supporting PT. JAJAKA in making more precise and strategic managerial decisions. Furthermore, this study contributes significantly to developing data mining methods in the poultry farming sector to improve efficiency and productivity sustainably. It provides valuable insights for PT. Jandela Jaga Kaloka will evaluate the success rate of broiler chicken production, facilitating more accurate managerial decision-making.

References

Aini, D. N. (2022). Seleksi Fitur untuk Prediksi Hasil Produksi Agrikultur pada Algoritma K-Nearest Neighbor (KNN)’. Jurnal Sistem Komputer dan Informatika (JSON, 4(1), 140. https://doi.org/10.30865/json.v4i1.4813. DOI: https://doi.org/10.30865/json.v4i1.4813

Akmal, K., Faqih, A., & Dikananda, F. (2023). Perbandingan Metode Algoritma Naïve Bayes Dan K-Nearest Neighbors Untuk Klasifikasi Penyakit Stroke’. JATI (Jurnal Mahasiswa Teknik Informatika, 7(1), 470–477. https://doi.org/10.36040/jati.v7i1.6367. DOI: https://doi.org/10.36040/jati.v7i1.6367

Amam, A. (2019). Usaha Ternak Ayam Pedaging Sistem Kemitraan Pola Dagang Umum: Pemetaan Sumber Daya dan Model Pengembangan’. Sains Peternakan, 17(2), 5. https://doi.org/10.20961/sainspet.v17i2.26892. DOI: https://doi.org/10.20961/sainspet.v17i2.26892

Ardiansyah, D., & Walim, W. (2018). Algoritma C4.5 untuk Klasifikasi Calon Peserta Lomba Cerdas Cermat Siswa SMP dengan Menggunakan Aplikasi RapidMiner’. Jurnal Inkofar, 1(2), 5–12. https://politeknikmeta.ac.id/meta/ojs/index.php/inkofar/article/view/29/45. DOI: https://doi.org/10.46846/jurnalinkofar.v1i2.29

Argina, A. M. (2020). Penerapan Metode Klasifikasi K-Nearest Neighbor pada Dataset Penderita Penyakit Diabetes’. Indonesian Journal of Data and Science, 1(2), 29–33. https://doi.org/10.33096/ijodas.v1i2.11. DOI: https://doi.org/10.33096/ijodas.v1i2.11

Audita, I., Damanik, I. S., & IRAWAN, E. K. A. (2022). Pemetaan Hasil Produksi Buah-Buahan Dengan Teknik Data Mining K-Medoids’. Jurnal Teknik Mesin, Industri, Elektro dan Informatika, 1(3), 39–53. https://doi.org/10.55606/jtmei.v1i3.535. DOI: https://doi.org/10.55606/jtmei.v1i3.535

Ayu, P., Purnama, W., & Putra, T. A. (2024). Klasifikasi Penjualan Produk Menggunakan Algoritma Naive Bayes pada Konter HP Bayu Cell’. Remik: Riset dan E-Jurnal Manajemen Informatika Komputer, 8(1), 286–292. https://doi.org/10.33395/remik.v8i1.13207.

Ayuningtyas, N., R, N., Basysyar, M., & F. (2022). Penerapan Data Mining pada Penjualan Produk MS Glow Menggunakan Metode Naive Bayes untuk Strategi Pemasaran’. Jurnal Accounting Information System (AIMS, 5(2), 157–166. https://doi.org/10.32627/aims.v5i2.503. DOI: https://doi.org/10.32627/aims.v5i2.503

Baihaqi, D. I., Handayani, A. N., & Pujianto, U. (2019). Perbandingan Metode Naïve Bayes dan C4.5 untuk Memprediksi Mortalitas pada Peternakan Ayam Broiler’ (Vol. 10, Issue 1, pp. 383–390). Jurnal Teknik Mesin, Elektro dan Ilmu Komputer. https://doi.org/10.24176/simet.v10i1.2846. DOI: https://doi.org/10.24176/simet.v10i1.2846

Basuki, B. (2023). Klasifikasi Tingkat Keberhasilan Produksi Ayam Broiler di Riau Menggunakan Algoritma Naïve Bayes’. Jurnal Sistem Komputer dan Informatika (JSON, 4(3), 510. https://doi.org/10.30865/json.v4i3.5800. DOI: https://doi.org/10.30865/json.v4i3.5800

Bratsas, C., Chondrokostas, E., Koupidis, K., & Antoniou, I. (2021). The use of national strategic reference framework data in knowledge graphs and data mining to identify red flags. Data, 6(1), 1–20. https://doi.org/10.3390/data6010002 DOI: https://doi.org/10.3390/data6010002

Cahyanti, F. L. D., Gata, W., & Sarasati, F. (2021). Implementasi Algoritma Naïve Bayes dan K-Nearest Neighbor Dalam Menentukan Tingkat Keberhasilan Immunotherapy Untuk Pengobatan Penyakit Kanker Kulit’. Jurnal Ilmiah Universitas Batanghari Jambi, 21(1), 259. https://doi.org/10.33087/jiubj.v21i1.1189. DOI: https://doi.org/10.33087/jiubj.v21i1.1189

Damuri, A. (2021). Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako’. JURIKOM (Jurnal Riset Komputer, 8(6), 219. https://doi.org/10.30865/jurikom.v8i6.3655. DOI: https://doi.org/10.30865/jurikom.v8i6.3655

Fauzi, A. (2023). Sistem Pakar Diagnosa Penyakit Hewan Ternak Sapi Menggunakan Metode Naïve Bayes’ (Vol. 1, Issue 1, pp. 281–284).

Ikhromr, F. N. (2023). Implementasi Data Mining Untuk Memprediksi Penyakit Diabetes Menggunakan Algoritma Naïve Bayes dan K-Nearest Neighbor’. INTECOMS: Journal of Information Technology and Computer Science, 6(1), 416–428. https://doi.org/10.31539/intecoms.v6i1.5916. DOI: https://doi.org/10.31539/intecoms.v6i1.5916

Ilham, N. (2020). Implementasi Hubungan Antara Pelaku Usaha pada Usaha Kemitraan Ayam Pedaging Skala Kecil di Indonesia’. In Relationships between Stakeholders in Small Scale Broiler Business Partnerships in Indonesia. http://download.garuda.kemdikbud.go.id/article.php?article=2203772&val=7169&title=Implementation

Kartarina, K., Sriwinarti, N. K., & Juniarti, N. L. P. (2021). Analisis Metode K-Nearest Neighbors (K-NN) Dan Naive Bayes Dalam Memprediksi Kelulusan Mahasiswa’. JTIM: Jurnal Teknologi Informasi dan Multimedia, 3(2), 107–113. https://doi.org/10.35746/jtim.v3i2.159. DOI: https://doi.org/10.35746/jtim.v3i2.159

Kurnia, E., Daulay, R., & Nugraha, F. (2019). Dampak Faktor Motivasi dan Fasilitas Kerja Terhadap Produktivitas Kerja Karyawan Pada Badan Usaha Milik Negara di Kota Medan’. Proseding Seminar Nasional Kewirausahaan, 1(1), 365–372.

Muharrom, M. (2023). Analisis Komparasi Algoritma Data Mining Naive Bayes, K-Nearest Neighbors dan Regresi Linier Dalam Prediksi Harga Emas’. Bulletin of Information Technology (BIT, 4(4), 430–438. https://doi.org/10.47065/bit.v4i4.986. DOI: https://doi.org/10.47065/bit.v4i4.986

Noviriandini, A., Handayani, P., & Syahriani. (2019). Prediksi Penyakit Liver Dengan Menggunakan Metode Naïve Bayes Dan K-Nearest Neighbour (KNN)’. Prosiding TAU SNAR-TEK Seminar Nasional Rekayasa dan Teknologi.

Nugroho, M., & Astuti, F. Y. (2021). Analisis Kelayakan Usaha Peternakan Ayam Pedaging’. Jurnal Manajemen Dayasaing, 23(1), 59–72. https://doi.org/10.23917/dayasaing.v23i1.14065. DOI: https://doi.org/10.23917/dayasaing.v23i1.14065

Priambodo, S. A., & Falani, A. Z. (2020). Pemanfaatan Data Mining Untuk Klasterisasi Potensi Produksi Beras di Kabupaten Blitar dengan Menggunakan Metode Fuzzy C-Means’. Jurnal SPIRIT, 12(2), 30–36. https://www.blitarkab.go.id/.

Rachman, R., & Handayani, R. N. (2021). Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM’. Jurnal Informatika, 8(2), 111–122. https://doi.org/10.31294/ji.v8i2.10494. DOI: https://doi.org/10.31294/ji.v8i2.10494

Rafi Nahjan, M., Heryana, N., & Voutama, A. (2023). Implementasi Rapidminer Dengan Metode Clustering K-Means Untuk Analisa Penjualan Pada Toko Oj Cell’. JATI (Jurnal Mahasiswa Teknik Informatika, 7(1), 101–104. https://doi.org/10.36040/jati.v7i1.6094. DOI: https://doi.org/10.36040/jati.v7i1.6094

Ramadhan, D., Hanuranto, A. T., & Mayasari, R. (2020). Implementasi Kandang Ayam Pintar Berbasis Internet of Things’. e-Proceeding of Engineering.

Rozi, M. F. (2023). Penerapan Data Mining Menggunakan Metode Naive Bayes Untuk Klasifikasi Data Penentuan Hasil Penjualan Dalam Strategi Pemasaran’. Jurnal Komputer Teknologi Informasi dan Sistem Informasi (JUKTISI, 2(2), 444–454. https://doi.org/10.62712/juktisi.v2i2.137. DOI: https://doi.org/10.62712/juktisi.v2i2.137

Safitri, D., Hilabi, S. S., & Nurapriani, F. (2023). Analisis Penggunaan Algoritma Klasifikasi Dalam Prediksi Kelulusan Menggunakan Orange Data Mining’. Rabit: Jurnal Teknologi dan Sistem Informasi Univrab, 8(1), 75–81. https://doi.org/10.36341/rabit.v8i1.3009. DOI: https://doi.org/10.36341/rabit.v8i1.3009

Sahar, S. (2020). Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Classifier Pada Dataset Penyakit Jantung’. Indonesian Journal of Data and Science, 1(3), 79–86. https://doi.org/10.33096/ijodas.v1i3.20. DOI: https://doi.org/10.33096/ijodas.v1i3.20

Sopiyanti, A., Hendro Pudjiantoro, T., & Santikarama, I. (2021). Klasifikasi Penjualan Jus Dengan Menggunakan Algoritma K-Nearest Neighbor (K-NN) Untuk Penerapan Konsep Up-Selling’. Seminar Nasional Informatika dan Aplikasinya (SNIA.

Zai, C. (2022). Implementasi Data Mining Sebagai Pengolahan Data’. Portaldata.org, 2(3), 12. http://portaldata.org/index.php/portaldata/article/view/107.

Downloads

Published

2024-10-28

How to Cite

Tukiyat, Anggai, S., & Agnia Bilqisti. (2024). Analysis of Broiler Chicken Production Success Classification Using K-Nearest Neighbors And Naive Bayes Methods at PT. Jandela Jaga Kaloka (Jajaka). Digitus : Journal of Computer Science Applications, 2(4), 222–244. https://doi.org/10.61978/digitus.v2i4.396