Smart Farming Technologies for Global Food Security: A Review of Robotics and Automation

Authors

  • Veronika Yuni T Universitas Jayabaya
  • Saromah STMIK Mercusuar
  • Budi Gunawan Universitas Jayabaya

DOI:

https://doi.org/10.61978/digitus.v3i4.1076

Keywords:

Precision Agriculture, Robotics, Automation, Smart Farming Technologies, Artificial Intelligence, UAVs, Sustainable Agriculture

Abstract

This narrative review explores the role of robotics and automation in precision agriculture, particularly in addressing global challenges such as food security, labor shortages, and environmental sustainability. A systematic literature search was conducted using Scopus, Web of Science, and other supplementary databases, focusing on studies from 2015 to 2025. Findings show that AI-based models and UAV monitoring can enhance crop yield by up to 20% and reduce water and fertilizer use by 30%. Smart irrigation, soft robotics, and autonomous systems also demonstrate effectiveness in specific applications like pruning, weeding, and aquaponics. Despite promising outcomes, adoption varies due to financial, infrastructural, and governance barriers, especially in developing regions. The review concludes that integrating robotics with AI, IoT, and UAVs has transformative potential for agriculture. Future research should prioritize system interoperability, dataset quality, and environmental impact assessments to support widespread, equitable implementation.

References

Aghi, D., Mazzia, V., & Chiaberge, M. (2020). Local motion planner for autonomous navigation in vineyards with a RGB-D camera-based algorithm and deep learning synergy. Machines, 8(2), 27. https://doi.org/10.3390/machines8020027 DOI: https://doi.org/10.3390/machines8020027

Ariss, A., Ennejjai, I., Lamjid, A., Mabrouki, J., Kharmoum, N., & Ziti, S. (2024). IoT-enabled smart greenhouse for robotic enhancement of tomato production: leveraging 5G and edge computing for advanced data-driven automation, precision irrigation, and scalable zoning principles. International Journal of Interactive Mobile Technologies (iJIM), 18(21), 88–116. https://doi.org/10.3991/ijim.v18i21.50829 DOI: https://doi.org/10.3991/ijim.v18i21.50829

Bagagiolo, G., Matranga, G., Cavallo, E., & Pampuro, N. (2022). Greenhouse robots: ultimate solutions to improve automation in protected cropping systems—a review. Sustainability, 14(11), 6436. https://doi.org/10.3390/su14116436 DOI: https://doi.org/10.3390/su14116436

Balabantaray, A., Behera, S., Liew, C., Chamara, N., Singh, M., Jhala, A., … & Pitla, S. (2024). Targeted weed management of Palmer amaranth using robotics and deep learning (YOLOv7). Frontiers in Robotics and AI, 11. https://doi.org/10.3389/frobt.2024.1441371 DOI: https://doi.org/10.3389/frobt.2024.1441371

Balasundaram, E., Vadivel, A., & Posarajan, A. (2022). Digital farming a crucial enabler for sustainable Indian agriculture. pp. 272–281. https://doi.org/10.2174/9789815049251122010018 DOI: https://doi.org/10.2174/9789815049251122010018

Baltazar, A., Santos, F., Moreira, A., Valente, A., & Boaventura‐Cunha, J. (2021). Smarter robotic sprayer system for precision agriculture. Electronics, 10(17), 2061. https://doi.org/10.3390/electronics10172061 DOI: https://doi.org/10.3390/electronics10172061

Bayar, G. (2017). Development of a Voronoi diagram based tree trunk detection system for mobile robots used in agricultural applications. Industrial Robot: The International Journal of Robotics Research and Application, 44(4), 521–531. https://doi.org/10.1108/ir-11-2016-0304 DOI: https://doi.org/10.1108/IR-11-2016-0304

Bazargani, K., & Deemyad, T. (2024). Automation’s impact on agriculture: opportunities, challenges, and economic effects. Robotics, 13(2), 33. https://doi.org/10.3390/robotics13020033 DOI: https://doi.org/10.3390/robotics13020033

Bhat, I. (2025). Leveraging artificial intelligence in agribusiness: a structured review of strategic management practices and future prospects. Discover Sustainability, 6(1). https://doi.org/10.1007/s43621-025-01260-3 DOI: https://doi.org/10.1007/s43621-025-01260-3

Bhattarai, U., Zhang, Q., & Karkee, M. (2024). Design, integration, and field evaluation of a robotic blossom thinning system for tree fruit crops. Journal of Field Robotics, 41(5), 1366–1385. https://doi.org/10.1002/rob.22330 DOI: https://doi.org/10.1002/rob.22330

Chen, Z., Chen, J., Li, Y., Gui, Z., & Yu, T. (2023). Tea bud detection and 3D pose estimation in the field with a depth camera based on improved YOLOv5 and the optimal pose-vertices search method. Agriculture, 13(7), 1405. https://doi.org/10.3390/agriculture13071405 DOI: https://doi.org/10.3390/agriculture13071405

D’Oronzio, M., & Sica, C. (2021). Innovation in Basilicata agriculture: from tradition to digital. Economia Agro-Alimentare, (2), 1–18. https://doi.org/10.3280/ecag2-2021oa12210 DOI: https://doi.org/10.3280/ecag2-2021oa12210

Dhillon, R. (2023). Small-scale farming: a review of challenges and potential opportunities offered by technological advancements. Sustainability, 15(21), 15478. https://doi.org/10.3390/su152115478 DOI: https://doi.org/10.3390/su152115478

Duncan, B., Bulanon, D., Bulanon, J., & Nelson, J. (2024). Development of a cross-platform mobile application for fruit yield estimation. Agriengineering, 6(2), 1807–1826. https://doi.org/10.3390/agriengineering6020105 DOI: https://doi.org/10.3390/agriengineering6020105

Emmi, L., Fernández, R., & Hernández, J. (2023). Editorial: Robotics for smart farms. Frontiers in Robotics and AI, 9. https://doi.org/10.3389/frobt.2022.1113440 DOI: https://doi.org/10.3389/frobt.2022.1113440

Fahey, T., Pham, H., Gardi, A., Sabatini, R., Stefanelli, D., Goodwin, I., … & Lamb, D. (2020). Active and passive electro-optical sensors for health assessment in food crops. Sensors, 21(1), 171. https://doi.org/10.3390/s21010171 DOI: https://doi.org/10.3390/s21010171

Fedorov, D. (2022). Modern trends in developing robotic systems in agro-industrial complex. IOP Conference Series: Earth and Environmental Science, 949(1), 012016. https://doi.org/10.1088/1755-1315/949/1/012016 DOI: https://doi.org/10.1088/1755-1315/949/1/012016

Gabriel, A., & Gandorfer, M. (2022). Adoption of digital technologies in agriculture—an inventory in a European small-scale farming region. Precision Agriculture, 24(1), 68–91. https://doi.org/10.1007/s11119-022-09931-1 DOI: https://doi.org/10.1007/s11119-022-09931-1

Gerhards, R., Risser, P., Spaeth, M., Saile, M., & Peteinatos, G. (2023). A comparison of seven innovative robotic weeding systems and reference herbicide strategies in sugar beet (Beta vulgaris subsp. vulgaris L.) and rapeseed (Brassica napus L.). Weed Research, 64(1), 42–53. https://doi.org/10.1111/wre.12603 DOI: https://doi.org/10.1111/wre.12603

Grigorev, G., Pitertsev, M., & Fomichev, E. (2025). Multimodal sensor fusion and embedded control for obstacle-aware feed pusher robotics in precision livestock farming, 35. https://doi.org/10.1117/12.3072669 DOI: https://doi.org/10.1117/12.3072669

Höffmann, M., Patel, S., & Büskens, C. (2024). Optimal guidance track generation for precision agriculture: a review of coverage path planning techniques. Journal of Field Robotics, 41(3), 823–844. https://doi.org/10.1002/rob.22286 DOI: https://doi.org/10.1002/rob.22286

Jiang, L. (2025). Overview of agricultural machinery automation technology for sustainable agriculture. Agronomy, 15(6), 1471. https://doi.org/10.3390/agronomy15061471 DOI: https://doi.org/10.3390/agronomy15061471

Joshi, A. (2025). Harnessing artificial intelligence for sustainable food production. pp. 25–56. https://doi.org/10.4018/979-8-3373-0842-5.ch002 DOI: https://doi.org/10.4018/979-8-3373-0842-5.ch002

Kan, X., Thayer, T., Carpin, S., & Karydis, K. (2021). Task planning on stochastic aisle graphs for precision agriculture. IEEE Robotics and Automation Letters, 6(2), 3287–3294. https://doi.org/10.1109/lra.2021.3062337 DOI: https://doi.org/10.1109/LRA.2021.3062337

Kumar, K. (2025). Self-service innovations in precision agriculture. pp. 391–432. https://doi.org/10.4018/979-8-3373-1295-8.ch014 DOI: https://doi.org/10.4018/979-8-3373-1295-8.ch014

Li, M., Wu, F., FengBo, W., Zou, T., Li, M., & Xiao, X. (2024). CNN-MLP-based configurable robotic arm for smart agriculture. Agriculture, 14(9), 1624. https://doi.org/10.3390/agriculture14091624 DOI: https://doi.org/10.3390/agriculture14091624

Lubag, M., Bonifácio, J., Tan, J., Concepcion, R., Mababangloob, G., Galang, J., … & Maniquiz-Redillas, M. (2023). Diversified impacts of enabling a technology-intensified agricultural supply chain on the quality of life in hinterland communities. Sustainability, 15(17), 12809. https://doi.org/10.3390/su151712809 DOI: https://doi.org/10.3390/su151712809

Mansour, A. (2025). Revolutionizing farming with agriculture 4.0. pp. 51–96. https://doi.org/10.4018/979-8-3373-5283-1.ch003 DOI: https://doi.org/10.4018/979-8-3373-5283-1.ch003

Milburn, L., Gamba, J., Fernandes, M., & Semini, C. (2023). Computer-vision based real time waypoint generation for autonomous vineyard navigation with quadruped robots. pp. 239–244. https://doi.org/10.1109/icarsc58346.2023.10129563 DOI: https://doi.org/10.1109/ICARSC58346.2023.10129563

Millard, A., Ravikanna, R., Groß, R., & Chesmore, D. (2019). Towards a swarm robotic system for autonomous cereal harvesting. pp. 458–461. https://doi.org/10.1007/978-3-030-25332-5_40 DOI: https://doi.org/10.1007/978-3-030-25332-5_40

Misopolinos, L., Zalidis, C., Liakopoulos, V., Stavridou, D., Katsigiannis, P., Alexandridis, T., … & Zalidis, G. (2015). Development of a UAV system for VNIR-TIR acquisitions in precision agriculture. https://doi.org/10.1117/12.2192660 DOI: https://doi.org/10.1117/12.2192660

Nijak, M., Skrzypczyński, P., Ćwian, K., Zawada, M., Szymczyk, S., & Wojciechowski, J. (2024). On the importance of precise positioning in robotised agriculture. Remote Sensing, 16(6), 985. https://doi.org/10.3390/rs16060985 DOI: https://doi.org/10.3390/rs16060985

Padhiary, M., Prasad, G., Hoque, A., Kumar, K., & Sahu, B. (2025). Advances in vertical farming: the role of artificial intelligence and automation in sustainable agriculture. LatIA, 3, 131. https://doi.org/10.62486/latia2025131 DOI: https://doi.org/10.62486/latia2025131

Pandey, S. (2025). Robotics and automation in modern agriculture. pp. 153–186. https://doi.org/10.4018/979-8-3373-5283-1.ch006 DOI: https://doi.org/10.4018/979-8-3373-5283-1.ch006

Ponce, D., Salcedo, J., Rosero-Montalvo, P., & Sanchis, J. (2023). Mobile robotics in smart farming: current trends and applications. Frontiers in Artificial Intelligence, 6. https://doi.org/10.3389/frai.2023.1213330 DOI: https://doi.org/10.3389/frai.2023.1213330

Rathod, T., Jadav, N., Tanwar, S., Pólkowski, Z., Yamsani, N., Sharma, R., … & Gafar, A. (2023). AI and blockchain-based secure data dissemination architecture for IoT-enabled critical infrastructure. Sensors, 23(21), 8928. https://doi.org/10.3390/s23218928 DOI: https://doi.org/10.3390/s23218928

Seol, J., Park, Y., Pak, J., Jo, Y., Lee, G., Kim, Y., … & Son, H. (2024). Human-centered robotic system for agricultural applications: design, development, and field evaluation. Agriculture, 14(11), 1985. https://doi.org/10.3390/agriculture14111985 DOI: https://doi.org/10.3390/agriculture14111985

Shamshiri, R., Sturm, B., Weltzien, C., Fulton, J., Khosla, R., Schirrmann, M., … & Hameed, I. (2024). Digitalization of agriculture for sustainable crop production: a use-case review. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1375193 DOI: https://doi.org/10.3389/fenvs.2024.1375193

Sparrow, R., & Howard, M. (2020). Robots in agriculture: prospects, impacts, ethics, and policy. Precision Agriculture, 22(3), 818–833. https://doi.org/10.1007/s11119-020-09757-9 DOI: https://doi.org/10.1007/s11119-020-09757-9

Toscano, F., Fiorentino, C., Capece, N., Erra, U., Travascia, D., Scopa, A., … & D’Antonio, P. (2024). Unmanned aerial vehicle for precision agriculture: a review. IEEE Access, 12, 69188–69205. https://doi.org/10.1109/access.2024.3401018 DOI: https://doi.org/10.1109/ACCESS.2024.3401018

Toscano, F., Fiorentino, C., Santana, L., Magalhães, R., Albiero, D., Řezník, T., … & D’Antonio, P. (2025). Recent developments and future prospects in the integration of machine learning in mechanised systems for autonomous spraying: a brief review. Agriengineering, 7(5), 142. https://doi.org/10.3390/agriengineering7050142 DOI: https://doi.org/10.3390/agriengineering7050142

Urrea, C., & Kern, J. (2025). Recent advances and challenges in industrial robotics: a systematic review of technological trends and emerging applications. Processes, 13(3), 832. https://doi.org/10.3390/pr13030832 DOI: https://doi.org/10.3390/pr13030832

Vahdanjoo, M., Gislum, R., & Sørensen, C. (2023). Operational, economic, and environmental assessment of an agricultural robot in seeding and weeding operations. Agriengineering, 5(1), 299–324. https://doi.org/10.3390/agriengineering5010020 DOI: https://doi.org/10.3390/agriengineering5010020

Yao, L., Zedde, H., & Kowalchuk, G. (2021). Recent developments and potential of robotics in plant eco-phenotyping. Emerging Topics in Life Sciences, 5(2), 289–300. https://doi.org/10.1042/etls20200275 DOI: https://doi.org/10.1042/ETLS20200275

Downloads

Published

2025-10-06

How to Cite

Yuni T, V., Saromah, & Gunawan, B. (2025). Smart Farming Technologies for Global Food Security: A Review of Robotics and Automation. Digitus : Journal of Computer Science Applications, 3(4), 186–201. https://doi.org/10.61978/digitus.v3i4.1076