Biodiesel Production from Crude Palm Oil Using Eggshell-Derived Calcium Oxide Catalyst
Keywords:
Energy Security, Environmental Sustainability, Biodiesel, Crude Palm Oil, Emissions, CatalystAbstract
Biodiesel production from crude palm oil (CPO) presents a sustainable alternative to fossil fuels, addressing energy security and environmental concerns. This study investigates the synthesis of biodiesel using a two-step transesterification process, incorporating an eggshell-derived calcium oxide (CaO) catalyst. The methodology includes purification of CPO, followed by esterification with sulfuric acid and transesterification with the CaO catalyst. Optimized reaction conditions yielded a biodiesel production rate of 78.6%, with the final product meeting established quality standards for density, viscosity, flash point, and cetane number. The environmental advantages of CPO biodiesel are highlighted, including reduced carbon emissions and the promotion of sustainable agricultural practices. Additionally, the research underscores the economic potential of biodiesel in enhancing energy independence and supporting rural development in palm oil-producing regions. The findings advocate for further research and investment to optimize biodiesel production processes and fully harness the benefits of this renewable energy source.
References
A.K, N., E.S.M, M., M.Z., A., & F, A. (2009). Biodiesel Production from Crude Palm Oil by Transesterification Process.
Akhtar, E. T. (2023). Biofuels: A Renewable Solution for Energy Security and Climate Change Mitigation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4475528
Alkabbashi, A. N., Alam, M. Z., Mirghani, M. E. S., & Al-Fusaiel, A. M. A. (2009). Biodiesel production from Crude Palm Oil by transesterification process. Journal of Applied Sciences, 9(17), 3166–3170. https://doi.org/10.3923/jas.2009.3166.3170
Atabani, A. E., Silitonga, A., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A Comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviws, 16(4), 2093.
A.Z, U., R.F., U., M., B., S., Z. A., G., A., & I, A. K. (2024). Chemical Profiling and Industrial Viability of Neem Seed Oil: A Comprehensive Study for Sustainable Biodiesel Production. International Journal of Applied and Scientific Research, 2(1), 13–24. https://doi.org/10.59890/ijasr.v2i1.1151.
Cai, Z. Z., Wang, Y., Teng, Y. L., Chong, K. M., Wang, J. W., Zhang, J. W., & Yang, D. P. (2015). A two-step biodiesel production process from waste cooking oil via recycling crude glycerol esterification catalyzed by alkali catalyst. Fuel Process. Technol, 137, 186–193.
Demirbas, A. (2011). Progress and recent trends in biodiesel fuels Energy Conversion and Management (Vol. 50, Issue ue 1, pp. 14–34).
Dubey, S. M., Gole, V. L., & Gogate, P. R. (2015). Ultrasonics sonochemistry cavitation assisted synthesis of fatty acid methyl esters from sustainable feedstock in presence of heterogeneous catalyst using two step process. Ultrason Sonochem, 23, 165–173.
E.E., E., B.S., A., & N.S, P. (2013). Lagenaria Siceraria (Mol.) Standley. Properties of Seed Oils and Variability in Fatty Acids Composition of Ten Cultivars. International Journal of Natural Products Research, 3(4), 102–106.
Fakai, U. R. (2023). Statistical Optimization of Process Variables for Biodiesel Production from Lagenaria Siceraria Seed Oil. September. https://doi.org/10.59890/ijir.v1i7.40
Harsono, S. S., Prochnow, A., Grundmann, P., Hansen, A., & Hallmann, C. (2012). Energy balances and greenhouse gas emissions of palm oil biodiesel in Indonesia. GCB Bioenergy, 4(2), 213–228. https://doi.org/10.1111/j.1757-1707.2011.01118.x
Hayyan, A. (2011). Reduction of high content of free fatty acid in sludge palm oil via acid catalyst for biodiesel production. Fuel Processing Technology, 92(5), 920–924.
J., J., & G, P. (2011). Enhancement of the two stage Process for Producing Biodiesel from high Free Fatty Acid Mixed Crude Palm Oil. Nat Sci, 45, 1094 – 1104.
J., T., D., W., & S, K. (2023). Investigating the Effect of a Diesel Refined Crude Palm oil Methyl Ester- Hydrous Ethanol Blend on the Performance and Emissions of an Unmodified Direct Injection Diesel Engine. ACS Omega, 8, 9275 – 9290.
Kumar Tiwari, A., Kumar, A., & Raheman, H. (n.d.). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass Bioenergy.
Lam, & Lee. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward Biotechnology Advances (Vol. 30, Issue ue 3, pp. 673–690).
Lim, & Teong. (2010). Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Ideas publication.
Loong, T. C., & Idris, A. (2016). One step transesterification of biodiesel production using simultaneous cooling and microwave heating. J. Clean, 1–6.
Maltitz, G. P., & Stafford, W. (2011). Assessing opportunities and constraints for biofuel development in sub-Saharan Africa. Biomass and Bioenergy, 35(7), 1939–1949.
Maulidiyah, M., Watoni, A. H., Maliana, N., Irwan, I., Salim, L. O. A., Arham, Z., & Nurdin, M. (2022). Biodiesel production from crude palm oil using sulfuric acid and K2O catalysts through a two stage reaction. Biointerface Research in Applied Chemistry, 12(3), 3150–3160. https://doi.org/10.33263/BRIAC123.31503160.
M.K.A, G., A.A., I., Warra, & L, A. (2012). Extraction and Physiochemical Determination of Garlic (Allium sativum) oil. Journal of Food and Nutritional Sciences, 1(2), 285 – 287.
Oliveira, R. F., ChangetheRest, change the, White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., Ketchum, K. A., Klenk, H. P., Gill, S., Dougherty, B. A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E. F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., & Venter, J. C. (2018). Enhanced Reader.pdf. In Nature (Vol. 388, pp. 539–547).
Photaworn, S., Tongurai, C., & Kungsanunt, S. (2017). Process development of two-step esterification plus catalyst solution recycling on waste vegetable oil possessing high free fatty acid. Chem. Eng. Process. Process Intensif, 118, 1–8.
Pisarello, M. L., & Querini, C. A. (2013). Catalyst consumption during one and two steps transesterification of crude soybean oils. Chem. Eng. J, 234, 276–283.
P.L., B., G.P., M., S.A., H., & D.M.H, A. (n.d.). Utilization of Waste cockle shell in biodiesel production. Review. Chemical Engineering Journal, 168, 15–22.
Punvichai Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. (n.d.). Biomass Bioenergy.
R.S.P.O. (2018). Round Table On Sustainable Oil; Rspo Launches 2018 Principles And Criteria Metrics.
Sharma, Y. C., & Singh, B. (2010). An ideal feedstock, kusum (Schleichera triguga) for preparation of biodiesel: optimization of parameters. Fuel, 89, 1470–1474. https://doi.org/10.1016/J.FUEL.2009.10.013.
Souza, S. P., Pacca, S., Ávila, M. T., & Borges, J. L. B. (2010). Greenhouse gas emissions and energy balance of palm oil biofuel. Renewable Energy, 35(11), 2552–2561. https://doi.org/10.1016/j.renene.2010.03.028
Sustainability of Palm Biodiesel in Transportation: a Review on Biofuel Standard, Policy and International Collaboration Between Malaysia and Colombia. (n.d.). BioEnergy Research, 14, 43–60.
Tan, K. T., Lee, K. T., & Mohamed, A. R. (2009). Life-cycle assessment of crude palm oil biodiesel production. Journal of Cleaner Production, 17(4), 287–295.
Vandkata, R. M., Mallikarjun, M. V, & Rao, G. L. N. (2012). Biodiesel production from palm oil by transesterification method. Int. J. Curr. Res, 4, 83–88.
Yacob, S., Hassan, M. A., Shirai, Y., Wakisaka, M., & Subash, S. (n.d.). Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment. Science of the Total Environment, 366(1), 187–196. http://standards.ieee.org/guides/style/2009_Style_Manual.pdf.
Yang, S., Li, Q., Gao, Y., Zheng, L., & Liu, Z. (2014). Biodiesel production from swine manure via housefly larvae (Musca domestica L. Renew Energy, 66, 222–227. https://doi.org/10.1016/j.renene.2013.11.076.
Zeng, J., Wang, X., Zhao, B., Sun, J., & Wang, Y. (2009). Rapid in situ transesterification of sunflower oil. Ind. Eng. Chem. Res, 48, 850–856. https://doi.org/10.1021/ie8008956.
Zhang, Y., Dube, M. A., McLean, D. D., & Kates, M. (n.d.). Biodiesel production from waste cooking oil: 1. Process Design and Technological Assessment. Bioresour. Technol, 89, 1–16. https://