Aligning AI Impact with Strategy: Cross Sector Metrics for Sustainable Business Model Transformation
DOI:
https://doi.org/10.61978/novatio.v2i3.850Keywords:
AI Enabled Business Model Innovation, Standardized Metrics, Sector Specific Frameworks, Monetization Logic, Operational Efficiency, Ethical AI, Adaptive Performance MeasurementAbstract
AI-enabled Business Model Innovation (BMI) has become a key driver of competitive advantage. This study explores the role of standardized and adaptive metrics in assessing AI’s strategic and operational impacts across industries. Drawing on literature reviews, sectoral case studies, and industry surveys, the findings show that universal metrics support broad comparability, while sector-specific measures capture operational nuances. A hybrid framework integrating universal KPIs, sectoral extensions, and adaptive dimensions for evolving AI capabilities is proposed to ensure relevance, reliability, and social alignment. AI-driven operational improvements gain higher business value when combined with adaptive monetization models and supported by ethical and trust-based metrics. Thus, developing dynamic and context-aware performance measurement frameworks is a strategic necessity in the era of intelligent enterprises.
References
Abedin, B. (2021). Managing the Tension Between Opposing Effects of Explainability of Artificial Intelligence: A Contingency Theory Perspective. Internet Research, 32(2), 425–453. https://doi.org/10.1108/intr-05-2020-0300 DOI: https://doi.org/10.1108/INTR-05-2020-0300
Agarwal, A., & Agarwal, H. (2023). A Seven-Layer Model With Checklists for Standardising Fairness Assessment Throughout the AI Lifecycle. Ai and Ethics, 4(2), 299–314. https://doi.org/10.1007/s43681-023-00266-9 DOI: https://doi.org/10.1007/s43681-023-00266-9
Ali, W. (2024). The Role of Artificial Intelligence Technology and Innovation in Disrupting Traditional Business Models and Startup Ecosystem. Interantional Journal of Scientific Research in Engineering and Management, 08(008), 1–4. https://doi.org/10.55041/ijsrem37268 DOI: https://doi.org/10.55041/IJSREM37268
Aliahmadi, A., Nozari, H., & Ghahremani-Nahr, J. (2022). AIoT-based Sustainable Smart Supply Chain Framework. International Journal of Innovation in Management Economics and Social Sciences, 2(2), 28–38. https://doi.org/10.52547/ijimes.2.2.28 DOI: https://doi.org/10.52547/ijimes.2.2.28
Alias, O. I., & Eizagirre, A. E. (2020). Responsible Innovation for Sustainable Development Goals in Business: An Agenda for Cooperative Firms. Sustainability, 12(17), 6948. https://doi.org/10.3390/su12176948 DOI: https://doi.org/10.3390/su12176948
Bedué, P., & Fritzsche, A. (2021). Can We Trust AI? An Empirical Investigation of Trust Requirements and Guide to Successful AI Adoption. Journal of Enterprise Information Management, 35(2), 530–549. https://doi.org/10.1108/jeim-06-2020-0233 DOI: https://doi.org/10.1108/JEIM-06-2020-0233
Behera, R. K., Bala, P. K., Rana, N. P., & Irani, Z. (2024). Empowering Co-Creation of Services With Artificial Intelligence: An Empirical Analysis to Examine Adoption Intention. Marketing Intelligence & Planning, 42(6), 941–975. https://doi.org/10.1108/mip-08-2023-0412 DOI: https://doi.org/10.1108/MIP-08-2023-0412
Bocken, N., Boons, F., & Baldassarre, B. (2019). Sustainable Business Model Experimentation by Understanding Ecologies of Business Models. Journal of Cleaner Production, 208, 1498–1512. https://doi.org/10.1016/j.jclepro.2018.10.159 DOI: https://doi.org/10.1016/j.jclepro.2018.10.159
Chen, X. (2024). Exploring Just Spaces: How to Achieve the Fair Distribution of Urban Social Spaces Through Participatory Urban Planning. Ijesd, 1(3), 12–16. https://doi.org/10.54097/fj089r57 DOI: https://doi.org/10.54097/fj089r57
Chen, Y., Hu, Y., Zhou, S., & Yang, S. (2022). Investigating the Determinants of Performance of Artificial Intelligence Adoption in Hospitality Industry During COVID-19. International Journal of Contemporary Hospitality Management, 35(8), 2868–2889. https://doi.org/10.1108/ijchm-04-2022-0433 DOI: https://doi.org/10.1108/IJCHM-04-2022-0433
Corbin, D. E., Marqui, A. C., & Dacre, N. (2024). The Intersection of Artificial Intelligence and Project Management in UK Construction: An Exploration of Emerging Trends, Enablers, and Barriers. https://doi.org/10.36227/techrxiv.173198757.72380454/v1 DOI: https://doi.org/10.36227/techrxiv.173198757.72380454/v1
Davenport, T. H., Guha, A., Grewal, D., & Breßgott, T. (2019). How Artificial Intelligence Will Change the Future of Marketing. Journal of the Academy of Marketing Science, 48(1), 24–42. https://doi.org/10.1007/s11747-019-00696-0 DOI: https://doi.org/10.1007/s11747-019-00696-0
Farayola, O. A., Abdul, A. A., Irabor, B. O., & Okeleke, E. C. (2023). Innovative Business Models Driven by Ai Technologies: A Review. Computer Science & It Research Journal, 4(2), 85–110. https://doi.org/10.51594/csitrj.v4i2.608 DOI: https://doi.org/10.51594/csitrj.v4i2.608
Fischer, A. M., Rietveld, A. L., Teunissen, P. W., Hoogendoorn, M., & Bakker, P. (2023). What Is the Future of Artificial Intelligence in Obstetrics? A Qualitative Study Among Healthcare Professionals. BMJ Open, 13(10), e076017. https://doi.org/10.1136/bmjopen-2023-076017 DOI: https://doi.org/10.1136/bmjopen-2023-076017
Fukukawa, K., & Trivedi, R. H. (2025). Empathy, Ethics and Efficacy: The 3Es of Implementing Artificial Intelligence for Consumer Encounters. Psychology and Marketing. https://doi.org/10.1002/mar.22235 DOI: https://doi.org/10.1002/mar.22235
Gilsing, R., Wilbik, A., Grefen, P., Türetken, O., Özkan, B., Adalı, O. E., & Berkers, F. (2021). Defining Business Model Key Performance Indicators Using Intentional Linguistic Summaries. Software & Systems Modeling, 20(4), 965–996. https://doi.org/10.1007/s10270-021-00894-x DOI: https://doi.org/10.1007/s10270-021-00894-x
Göktaş, P., & Grzybowski, A. (2025). Shaping the Future of Healthcare: Ethical Clinical Challenges and Pathways to Trustworthy AI. Journal of Clinical Medicine, 14(5), 1605. https://doi.org/10.3390/jcm14051605 DOI: https://doi.org/10.3390/jcm14051605
Guo, L., & Xu, L. (2021). The Effects of Digital Transformation on Firm Performance: Evidence From China’s Manufacturing Sector. Sustainability, 13(22), 12844. https://doi.org/10.3390/su132212844 DOI: https://doi.org/10.3390/su132212844
Han, R., Lam, H. K., Zhan, Y., Wang, Y., Dwivedi, Y. K., & Tan, K. H. (2021). Artificial Intelligence in Business-to-Business Marketing: A Bibliometric Analysis of Current Research Status, Development and Future Directions. Industrial Management & Data Systems, 121(12), 2467–2497. https://doi.org/10.1108/imds-05-2021-0300 DOI: https://doi.org/10.1108/IMDS-05-2021-0300
Hassan, M., Borycki, E. M., & Kushniruk, A. (2024). Artificial Intelligence Governance Framework for Healthcare. Healthcare Management Forum, 38(2), 125–130. https://doi.org/10.1177/08404704241291226 DOI: https://doi.org/10.1177/08404704241291226
Jankovic, S. D., & Curovic, D. M. (2023). Strategic Integration of Artificial Intelligence for Sustainable Businesses: Implications for Data Management and Human User Engagement in the Digital Era. Sustainability, 15(21), 15208. https://doi.org/10.3390/su152115208 DOI: https://doi.org/10.3390/su152115208
Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Madotto, A., & Fung, P. (2023). Survey of Hallucination in Natural Language Generation. Acm Computing Surveys, 55(12), 1–38. https://doi.org/10.1145/3571730 DOI: https://doi.org/10.1145/3571730
Krakowski, S., Luger, J., & Raisch, S. (2022). Artificial Intelligence and the Changing Sources of Competitive Advantage. Strategic Management Journal, 44(6), 1425–1452. https://doi.org/10.1002/smj.3387 DOI: https://doi.org/10.1002/smj.3387
Liu, X., Rivera, S. C., Moher, D., Calvert, M., & Denniston, A. K. (2020). Reporting Guidelines for Clinical Trial Reports for Interventions Involving Artificial Intelligence: The CONSORT-AI Extension. BMJ, m3164. https://doi.org/10.1136/bmj.m3164 DOI: https://doi.org/10.1136/bmj.m3164
Mikalef, P., Fjørtoft, S. O., & Torvatn, H. (2019). Developing an Artificial Intelligence Capability: A Theoretical Framework for Business Value. 409–416. https://doi.org/10.1007/978-3-030-36691-9_34 DOI: https://doi.org/10.1007/978-3-030-36691-9_34
Minkkinen, M., Niukkanen, A., & Mäntymäki, M. (2022). What About Investors? ESG Analyses as Tools for Ethics-Based AI Auditing. Ai & Society, 39(1), 329–343. https://doi.org/10.1007/s00146-022-01415-0 DOI: https://doi.org/10.1007/s00146-022-01415-0
Mishra, S., & Tripathi, A. (2020). AI Business Model: An Integrative Business Approach. https://doi.org/10.21203/rs.3.rs-90687/v1 DOI: https://doi.org/10.21203/rs.3.rs-90687/v1
Oberije, C., Currie, R., Leaver, A., Redman, A., Teh, W., Sharma, N., Fox, G., Glocker, B., Khara, G., Nash, J., Ng, A. Y., & Kecskemethy, P. D. (2025). Assessing Artificial Intelligence in Breast Screening With Stratified Results on 306 839 Mammograms Across Geographic Regions, Age, Breast Density and Ethnicity: A Retrospective Investigation Evaluating Screening (ARIES) Study. BMJ Health & Care Informatics, 32(1), e101318. https://doi.org/10.1136/bmjhci-2024-101318 DOI: https://doi.org/10.1136/bmjhci-2024-101318
Oyeniyi, L. D., Ugochukwu, C. E., & Mhlongo, N. Z. (2024). Implementing AI in Banking Customer Service: A Review of Current Trends and Future Applications. International Journal of Science and Research Archive, 11(2), 1492–1509. https://doi.org/10.30574/ijsra.2024.11.2.0639 DOI: https://doi.org/10.30574/ijsra.2024.11.2.0639
Paul, S. K., Riaz, S., & Das, S. (2022). Adoption of Artificial Intelligence in Supply Chain Risk Management. Journal of Global Information Management, 30(8), 1–18. https://doi.org/10.4018/jgim.307569 DOI: https://doi.org/10.4018/JGIM.307569
Preece, A. (2018). Asking ‘Why’ in AI: Explainability of Intelligent Systems – perspectives and Challenges. Intelligent Sys in Account, 25(2), 63–72. https://doi.org/10.1002/isaf.1422 DOI: https://doi.org/10.1002/isaf.1422
Remané, G., Hanelt, A., Tesch, J. F., & Kolbe, L. M. (2017). The Business Model Pattern Database—A Tool for Systematic Business Model Innovation. International Journal of Innovation Management, 21(01), 1750004. https://doi.org/10.1142/s1363919617500049 DOI: https://doi.org/10.1142/S1363919617500049
Reznikov, R. (2024). Leveraging Generative Ai: Strategic Adoption Patterns for Enterprises. Modeling the Development of the Economic Systems, 1, 201–207. https://doi.org/10.31891/mdes/2024-11-29 DOI: https://doi.org/10.31891/mdes/2024-11-29
Rivera, S. C., Liu, X., Chan, A., Denniston, A. K., & Calvert, M. (2020). Guidelines for Clinical Trial Protocols for Interventions Involving Artificial Intelligence: The SPIRIT-AI Extension. BMJ, m3210. https://doi.org/10.1136/bmj.m3210 DOI: https://doi.org/10.1136/bmj.m3210
Roy, S. K., Dey, B. L., Brown, D., Abid, A., Apostolidis, C., Christofi, M., & Tarba, S. Y. (2025). Business Model Innovation Through AI Adaptation: The Role of Strategic Human Resources Management. British Journal of Management, 36(2), 546–559. https://doi.org/10.1111/1467-8551.12894 DOI: https://doi.org/10.1111/1467-8551.12894
Sena, V., & Nocker, M. (2021). AI and Business Models: The Good, the Bad and the Ugly. Foundations and Trends® in Technology Information and Operations Management, 14(4), 324–397. https://doi.org/10.1561/0200000100 DOI: https://doi.org/10.1561/0200000100
Siontis, G. C., Sweda, R., Noseworthy, P. A., Friedman, P. A., Siontis, K. C., & Patel, C. J. (2021). Development and Validation Pathways of Artificial Intelligence Tools Evaluated in Randomised Clinical Trials. BMJ Health & Care Informatics, 28(1), e100466. https://doi.org/10.1136/bmjhci-2021-100466 DOI: https://doi.org/10.1136/bmjhci-2021-100466
Trakadas, P., Simoens, P., Gkonis, P. K., Sarakis, L., Angelopoulos, A., Ramallo-González, A. P., Skármeta, A., Trochoutsos, C., Calvο, D., Lobo, T. P., Chintamani, K., Fernández, I., Arnáiz, A., Parreira, J. X., Petrali, P., Leligou, H. C., & Karkazis, P. (2020). An Artificial Intelligence-Based Collaboration Approach in Industrial IoT Manufacturing: Key Concepts, Architectural Extensions and Potential Applications. Sensors, 20(19), 5480. https://doi.org/10.3390/s20195480 DOI: https://doi.org/10.3390/s20195480
Tunn, V., Bocken, N., Ellis A. van den Hende, & Schoormans, J. (2019). Business Models for Sustainable Consumption in the Circular Economy: An Expert Study. Journal of Cleaner Production, 212, 324–333. https://doi.org/10.1016/j.jclepro.2018.11.290 DOI: https://doi.org/10.1016/j.jclepro.2018.11.290
Upadhyay, N., Upadhyay, S., Al‐Debei, M. M., Baabdullah, A. M., & Dwivedi, Y. K. (2022). The Influence of Digital Entrepreneurship and Entrepreneurial Orientation on Intention of Family Businesses to Adopt Artificial Intelligence: Examining the Mediating Role of Business Innovativeness. International Journal of Entrepreneurial Behaviour & Research, 29(1), 80–115. https://doi.org/10.1108/ijebr-02-2022-0154 DOI: https://doi.org/10.1108/IJEBR-02-2022-0154
Urbinati, A., Chiaroni, D., Chiesa, V., & Frattini, F. (2019). The Role of Business Model Design in the Diffusion of Innovations: An Analysis of a Sample of Unicorn-Tech Companies. International Journal of Innovation and Technology Management, 16(01). https://doi.org/10.1142/s0219877019500111 DOI: https://doi.org/10.1142/S0219877019500111
Uslu, S., Kaur, D., Rivera, S. J., Durresi, A., Durrësi, M., & Babbar‐Sebens, M. (2021). Trustworthy Acceptance: A New Metric for Trustworthy Artificial Intelligence Used in Decision Making in Food–Energy–Water Sectors. 208–219. https://doi.org/10.1007/978-3-030-75100-5_19 DOI: https://doi.org/10.1007/978-3-030-75100-5_19
Venugopal, V. K., Takhar, R., Gupta, S. K., & Mahajan, V. (2022). Clinical Explainability Failure (CEF) &Amp; Explainability Failure Ratio (EFR) – Changing the Way We Validate Classification Algorithms. Journal of Medical Systems, 46(4). https://doi.org/10.1007/s10916-022-01806-2 DOI: https://doi.org/10.1007/s10916-022-01806-2
Wamba-Taguimdje, S.-L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of Artificial Intelligence (AI) on Firm Performance: The Business Value of AI-based Transformation Projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/bpmj-10-2019-0411 DOI: https://doi.org/10.1108/BPMJ-10-2019-0411
Weber, M., Beutter, M., Weking, J., Böhm, M., & Krcmar, H. (2021). AI Startup Business Models. Business & Information Systems Engineering, 64(1), 91–109. https://doi.org/10.1007/s12599-021-00732-w DOI: https://doi.org/10.1007/s12599-021-00732-w


