Strategic Valuation of Generative AI in Retail: A Real Options Approach to Managing Innovation Uncertainty

Authors

  • Fardan Zeda Achmadi Yuda Politeknik Penerbangan Indonesia Curug
  • Untung Lestari Nur Wibowo Akademi Penerbang Indonesia Banyuwang

DOI:

https://doi.org/10.61978/novatio.v3i2.861

Keywords:

Generative AI, Retail Strategy, Real Options Modeling, Investment Evaluation, Uncertainty, ROI, Technology Adoption

Abstract

Generative Artificial Intelligence (AI) is reshaping retail investment strategies, yet traditional evaluation tools such as Net Present Value (NPV) and Internal Rate of Return (IRR) struggle to capture uncertainty and flexibility. This study applies a binomial lattice real options model to assess Generative AI investments in retail, demonstrating that real options provide a more adaptive framework than conventional methods. The model evaluates multi-stage decisions pilot testing, regional scaling, and enterprise adoption and incorporates sensitivity analyses to account for adoption probabilities and volatility scenarios. Results indicate that real options modeling captures strategic flexibility by valuing managerial discretion, phased rollouts, and intangible benefits, which static NPV models overlook. This highlights its relevance for addressing retail-specific challenges such as data integration and organizational readiness. The study concludes that real options offer a superior framework for evaluating AI investments, supporting adaptive planning and long-term strategic value for retailers.

References

Afkar, M. A. & Fathurrahmad. (2023). Transformasi Bisnis Dengan Penerapan Kecerdasan Buatan (AI) Pada Sistem Informasi Dan Teknologi Digital: Tren Utama Tahun 2023. Journal Digital Technology Trend, 2(1), 1–12. https://doi.org/10.56347/jdtt.v2i1.146

Ali, S. W., Wani, T. A., & Tyagi, N. (2022). A Qualitative Study on Innovation and Dimensional Aspects of the Omnichannel Retail Business Model. International Journal of E-Business Research, 18(2), 1–20. https://doi.org/10.4018/ijebr.294108 DOI: https://doi.org/10.4018/IJEBR.294108

Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer Experiences in the Age of Artificial Intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548 DOI: https://doi.org/10.1016/j.chb.2020.106548

Arachchi, H. A. D. M., & Samarasinghe, D. (2023). Impact of Embedded AI Mobile Smart Speech Recognition On consumer Attitudes Towards AI and Purchase Intention Across Generations X and Y. European Journal of Management Studies, 29(1), 3–29. https://doi.org/10.1108/ejms-03-2023-0019 DOI: https://doi.org/10.1108/EJMS-03-2023-0019

Arnold, Z., Rahkovsky, I., & Huang, T. C. (2020). Tracking AI Investment: Initial Findings From the Private Markets. https://doi.org/10.51593/20190011 DOI: https://doi.org/10.51593/20190011

Baev, L., & Egorova, O. (2017). Performance Management of Investment Projects Based on Real Option Theory and Method of Analysis of Hierarchies. SHS Web of Conferences, 35, 01145. https://doi.org/10.1051/shsconf/20173501145 DOI: https://doi.org/10.1051/shsconf/20173501145

Ballestra, L. V., Pacelli, G., & Radi, D. (2019). Valuing Strategic Investments Under Stochastic Interest Rates: A Real Option Approach. Corporate Ownership and Control, 16(3), 89–97. https://doi.org/10.22495/cocv16i3art8 DOI: https://doi.org/10.22495/cocv16i3art8

Balliauw, M., Meersman, H., Voorde, E. V. d., & Vanelslander, T. (2018). Towards Improved Port Capacity Investment Decisions Under Uncertainty: A Real Options Approach. Transport Reviews, 39(4), 531–552. https://doi.org/10.1080/01441647.2018.1556228 DOI: https://doi.org/10.1080/01441647.2018.1556228

Bonetti, F., Montecchi, M., Plangger, K., & Schau, H. J. (2022). Practice Co-Evolution: Collaboratively Embedding Artificial Intelligence in Retail Practices. Journal of the Academy of Marketing Science, 51(4), 867–888. https://doi.org/10.1007/s11747-022-00896-1 DOI: https://doi.org/10.1007/s11747-022-00896-1

Braganza, A., Chen, W., Canhoto, A. I., & Sap, S. (2021). Productive Employment and Decent Work: The Impact of AI Adoption on Psychological Contracts, Job Engagement and Employee Trust. Journal of Business Research, 131, 485–494. https://doi.org/10.1016/j.jbusres.2020.08.018 DOI: https://doi.org/10.1016/j.jbusres.2020.08.018

Brau, R. I., Sanders, N. R., Aloysius, J., & Williams, D. (2023). Utilizing People, Analytics, and AI for Decision Making in the Digitalized Retail Supply Chain. Journal of Business Logistics, 45(1). https://doi.org/10.1111/jbl.12355 DOI: https://doi.org/10.1111/jbl.12355

Brière, M., & Szafarz, A. (2021). When It Rains, It Pours: Multifactor Asset Management in Good and Bad Times. The Journal of Financial Research, 44(3), 641–669. https://doi.org/10.1111/jfir.12257 DOI: https://doi.org/10.1111/jfir.12257

Cao, C., Jin, Y., & Huang, H. (2021). Research on the Construction of Enterprise Financial Shared Service Center Based on Cloud Computing. E3s Web of Conferences, 235, 01041. https://doi.org/10.1051/e3sconf/202123501041 DOI: https://doi.org/10.1051/e3sconf/202123501041

Ciuchita, R., Gummerus, J., Holmlund, M., & Linhart, E. L. (2022). Programmatic Advertising in Online Retailing: Consumer Perceptions and Future Avenues. Journal of Service Management, 34(2), 231–255. https://doi.org/10.1108/josm-06-2021-0238 DOI: https://doi.org/10.1108/JOSM-06-2021-0238

Cortellazzo, L., Bruni, E., & Zampieri, R. (2019). The Role of Leadership in a Digitalized World: A Review. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.01938 DOI: https://doi.org/10.3389/fpsyg.2019.01938

Ersen, H. Y., Taş, O., & Kahraman, C. (2018). Intuitionistic Fuzzy Real-Options Theory and Its Application to Solar Energy Investment Projects. Engineering Economics, 29(2). https://doi.org/10.5755/j01.ee.29.2.19206 DOI: https://doi.org/10.5755/j01.ee.29.2.19206

Ferreira, A., Franco, M., & Haase, H. (2021). Strategic Alliances and Development of Intellectual Capital: A Study of Technology-Based SMEs. International Journal of Organizational Analysis, 30(6), 1644–1671. https://doi.org/10.1108/ijoa-10-2020-2440 DOI: https://doi.org/10.1108/IJOA-10-2020-2440

Gelles, R., Hwang, T., & Rodríguez, S. (2021). Mapping Research Agendas in U.S. Corporate AI Laboratories. https://doi.org/10.51593/20200037 DOI: https://doi.org/10.51593/20200037

Herrmann, H., & Masawi, B. (2022). Three and a Half Decades of Artificial Intelligence in Banking, Financial Services, and Insurance: A Systematic Evolutionary Review. Strategic Change, 31(6), 549–569. https://doi.org/10.1002/jsc.2525 DOI: https://doi.org/10.1002/jsc.2525

Kader, R., Baggaley, R. F., Hussein, M., Ahmad, O. F., Patel, N., Corbett, G., Dolwani, S., Stoyanov, D., & Lovat, L. (2022). Survey on the Perceptions of UK Gastroenterologists and Endoscopists to Artificial Intelligence. Frontline Gastroenterology, 13(5), 423–429. https://doi.org/10.1136/flgastro-2021-101994 DOI: https://doi.org/10.1136/flgastro-2021-101994

Keller, D. J. R., Chauvet, L., Thereaux, O., Fawcett, J., Dewhurst, C., Scott, A., Wells, P. N. T., & Tennison, J. (2018). The Role of Data in AI Business Models (Report). https://doi.org/10.61557/gtet5445 DOI: https://doi.org/10.61557/GTET5445

Kremer, R. (2023). Corporate Capital Allocation: A behavioral Perspective and Guidance for Future Research. Journal of Strategy and Management, 16(3), 429–445. https://doi.org/10.1108/jsma-01-2020-0014 DOI: https://doi.org/10.1108/JSMA-01-2020-0014

Kulkarni, P. M., Mutkekar, R. R., & Ingalagi, S. (2020). Role of Strategic Management for Employee Engagement and Skill Development for Start-Ups. Vilakshan – Ximb Journal of Management, 17(1/2), 79–95. https://doi.org/10.1108/xjm-07-2020-0036 DOI: https://doi.org/10.1108/XJM-07-2020-0036

MacDougall, S. L. (2018). Strategic Timing of Commercial-Scale Tidal Energy Investment. International Marine Energy Journal, 1(1 (Aug)), 35–40. https://doi.org/10.36688/imej.1.35-40 DOI: https://doi.org/10.36688/imej.1.35-40

Natarajan, S., Mahmood, I. P., & Mitchell, W. (2019). Middle Management Involvement in Resource Allocation: The Evolution of Automated Teller Machines and Bank Branches in India. Strategic Management Journal, 40(7), 1070–1096. https://doi.org/10.1002/smj.3017 DOI: https://doi.org/10.1002/smj.3017

Nauhaus, S., Luger, J., & Raisch, S. (2021). Strategic Decision Making in the Digital Age: Expert Sentiment and Corporate Capital Allocation. Journal of Management Studies, 58(7), 1933–1961. https://doi.org/10.1111/joms.12742 DOI: https://doi.org/10.1111/joms.12742

Osakwe, C.-J. (2018). Incentive Compatible Decision Making: Real Options With Adverse Incentives. Axioms, 7(1), 9. https://doi.org/10.3390/axioms7010009 DOI: https://doi.org/10.3390/axioms7010009

Posza, A. (2020). The Evaluation of Venture Capital Investments Using Real Option Approach. Marketing & Menedzsment, 54(2), 17–29. https://doi.org/10.15170/mm.2020.54.02.02 DOI: https://doi.org/10.15170/MM.2020.54.02.02

Puntoni, S., Reczek, R. W., Giesler, M., & Botti, S. (2020). Consumers and Artificial Intelligence: An Experiential Perspective. Journal of Marketing, 85(1), 131–151. https://doi.org/10.1177/0022242920953847 DOI: https://doi.org/10.1177/0022242920953847

Raffaelli, R. (2018). Technology Reemergence: Creating New Value for Old Technologies in Swiss Mechanical Watchmaking, 1970–2008. Administrative Science Quarterly, 64(3), 576–618. https://doi.org/10.1177/0001839218778505 DOI: https://doi.org/10.1177/0001839218778505

Rambaud, S. C., & Pérez, A. M. S. (2016). Assessing the Option to Abandon an Investment Project by the Binomial Options Pricing Model. Advances in Decision Sciences, 2016, 1–12. https://doi.org/10.1155/2016/7605909 DOI: https://doi.org/10.1155/2016/7605909

Teixeira, D. M., Alves, A. O., Freitas, J. S., & Bagno, R. B. (2023). A Preliminary Strategy Framework for an Academic Technology Center. Product Management & Development, 21(1), e20230009. https://doi.org/10.4322/pmd.2023.003 DOI: https://doi.org/10.4322/pmd.2023.003

Trigeorgis, L., & Reuer, J. J. (2016). Real Options Theory in Strategic Management. Strategic Management Journal, 38(1), 42–63. https://doi.org/10.1002/smj.2593 DOI: https://doi.org/10.1002/smj.2593

Tula, O. A., Daraojimba, C., Eyo-Udo, N. L., Egbokhaebho, B. A., Ofonagoro, K. A., Ogunjobi, O. A., Gidiagba, J. O., & Banso, A. A. (2023). Analyzing Global Evolution of Materials Research Funding and Its Influence on Innovation Landscape: A Case Study of U.S. Investment Strategies. Engineering Science & Technology Journal, 4(3), 120–139. https://doi.org/10.51594/estj.v4i3.556 DOI: https://doi.org/10.51594/estj.v4i3.556

Weber, F., & Schütte, R. (2019). A Domain-Oriented Analysis of the Impact of Machine Learning—The Case of Retailing. Big Data and Cognitive Computing, 3(1), 11. https://doi.org/10.3390/bdcc3010011 DOI: https://doi.org/10.3390/bdcc3010011

Wiesenberg, M., Godulla, A., Tengler, K., Noelle, I.-M., Kloss, J., Klein, N., & Eeckhout, D. (2020). Key Challenges in Strategic Start-Up Communication. Journal of Communication Management, 24(1), 49–64. https://doi.org/10.1108/jcom-10-2019-0129 DOI: https://doi.org/10.1108/JCOM-10-2019-0129

Ye, Y., Lau, K. H., & Teo, L. K. Y. (2018). Drivers and Barriers of Omni-Channel Retailing in China. International Journal of Retail & Distribution Management, 46(7), 657–689. https://doi.org/10.1108/ijrdm-04-2017-0062 DOI: https://doi.org/10.1108/IJRDM-04-2017-0062

Zhou, L., Liu, B., Li, Y., Wang, M., Sun, C., Zhang, X., Liu, G., & SIUZANNA, N. (2023). Cost-Effectiveness of Pit and Fissure Sealing at Schools for Caries Prevention in China: A Markov Modeling Analysis. Caries Research, 57(4), 516–523. https://doi.org/10.1159/000530377 DOI: https://doi.org/10.1159/000530377

Downloads

Published

2025-04-30

How to Cite

Yuda, F. Z. A., & Wibowo, U. L. N. (2025). Strategic Valuation of Generative AI in Retail: A Real Options Approach to Managing Innovation Uncertainty. Novatio : Journal of Management Technology and Innovation , 3(2), 107–119. https://doi.org/10.61978/novatio.v3i2.861

Issue

Section

Articles