Strategic Innovation Roadmapping in the Age of AI: A Framework for Competitive Advantage
DOI:
https://doi.org/10.61978/novatio.v3i1.859Keywords:
Innovation Roadmap, AI Readiness, Strategic Planning, Digital Maturity, Competitive Advantage, Governance, Time to MarketAbstract
This study investigates how the quality of innovation roadmaps, moderated by organizational AI readiness and strategic maturity, shapes competitive advantage. Unlike prior studies that focus on either digital maturity or AI adoption alone, this research emphasizes the structural integrity of roadmaps clarity, adaptability, and alignment as a distinct driver of innovation performance in rapidly evolving technological environments. Methodologically, the study applies a conceptual–empirical design using 2023–2024 industry benchmarks and sector-neutral indicators. Anchored in the Dynamic Capabilities Theory and Resource-Based View, it hypothesizes that high-quality roadmaps, when mediated by AI readiness, accelerate time-to-market and enhance return on investment (ROI). Findings indicate that organizations employing digitally supported, high-quality roadmaps achieve up to 30% higher project success rates and 25% faster innovation cycles. Yet, these benefits are conditional realized only where infrastructure maturity, inclusive governance, and supportive policy frameworks exist. Persistent barriers, including organizational resistance, fragmented data systems, and regulatory complexity, constrain the broader realization of these outcomes. The study concludes that strategic roadmapping is most effective when framed as a systemic integration of tools, people, and policies. Its primary contribution is a scalable framework that aligns innovation planning with digital capability, offering firms both agility and resilience to sustain competitive advantage in volatile markets.
References
Ana Carolina dos Santos Paes, Soares, A. C., Lima, I. M., Leonel Del Rey de Melo, & Matheus Luiz Pontelo de Souza. (2020). Roadmapping Implementation in Digital Startups: Cases of Study in Agile Environment. Product Management & Development, 18(1), 92–99. https://doi.org/10.4322/pmd.2019.020 DOI: https://doi.org/10.4322/pmd.2019.020
Antony, J., Sony, M., Garza‐Reyes, J. A., McDermott, O., Tortorella, G. L., Jayaraman, R., Sucharitha, R. S., Salentijin, W., & Maalouf, M. (2023). Industry 4.0 Benefits, Challenges and Critical Success Factors: A comparative Analysis Through the Lens of Resource Dependence Theory Across Continents and Economies. Journal of Manufacturing Technology Management, 34(7), 1073–1097. https://doi.org/10.1108/jmtm-10-2022-0371 DOI: https://doi.org/10.1108/JMTM-10-2022-0371
Aramyan, L. H., Grainger, M., Logatcheva, K., Piras, S., Setti, M., Stewart, G., & Vittuari, M. (2020). Food Waste Reduction in Supply Chains Through Innovations: A Review. Measuring Business Excellence, 25(4), 475–492. https://doi.org/10.1108/mbe-11-2019-0105 DOI: https://doi.org/10.1108/MBE-11-2019-0105
Bérubé, C., Kovacs, Z. F., Fleisch, E., & Kowatsch, T. (2021). Reliability of Commercial Voice Assistants’ Responses to Health-Related Questions in Noncommunicable Disease Management: Factorial Experiment Assessing Response Rate and Source of Information. Journal of Medical Internet Research, 23(12), e32161. https://doi.org/10.2196/32161 DOI: https://doi.org/10.2196/32161
Chen, H., Li, L., & Chen, Y. (2020). Explore Success Factors That Impact Artificial Intelligence Adoption on Telecom Industry in China. Journal of Management Analytics, 8(1), 36–68. https://doi.org/10.1080/23270012.2020.1852895 DOI: https://doi.org/10.1080/23270012.2020.1852895
Contreras-Medina, D. I., Osorio, E. S., Olvera-Vargas, L. A., & Romero, Y. (2019). Technology Roadmapping Architecture Based on Knowledge Management: Case Study for Improved Indigenous Coffee Production From Guerrero, Mexico. Journal of Sensors, 2019, 1–17. https://doi.org/10.1155/2019/5860905 DOI: https://doi.org/10.1155/2019/5860905
Devkota, N., Paudel, R., Parajuli, S., Paudel, U. R., & Bhandari, U. (2022). Artificial Intelligence Adoption Among Nepalese Industries. 210–225. https://doi.org/10.4018/978-1-7998-9609-8.ch012 DOI: https://doi.org/10.4018/978-1-7998-9609-8.ch012
Didonet, S. R., & Villavicencio, G. J. D. (2020). Innovation Management in Market-Oriented SMEs: Learning and Internal Arrangements for Innovation. International Journal of Organizational Analysis, 28(5), 985–1003. https://doi.org/10.1108/ijoa-09-2019-1885 DOI: https://doi.org/10.1108/IJOA-09-2019-1885
Dua, G. K. (2024). Enhancing Organizational Performance Through Process Performance Measurement and KPIs in AI-Based Digital Transformation. 241–268. https://doi.org/10.4018/979-8-3693-5966-2.ch009 DOI: https://doi.org/10.4018/979-8-3693-5966-2.ch009
Fedyk, T., & Khimich, N. V. (2018). R&D Investment Decisions of IPO Firms and Long-Term Future Performance. Review of Accounting and Finance, 17(1), 78–108. https://doi.org/10.1108/raf-09-2016-0147 DOI: https://doi.org/10.1108/RAF-09-2016-0147
Feng, L., Wang, Q., Wang, J., & Lin, K.-Y. (2022). A Review of Technological Forecasting From the Perspective of Complex Systems. Entropy, 24(6), 787. https://doi.org/10.3390/e24060787 DOI: https://doi.org/10.3390/e24060787
Gualdi, F., & Cordella, A. (2021). Artificial Intelligence and Decision-Making: The Question of Accountability. https://doi.org/10.24251/hicss.2021.281 DOI: https://doi.org/10.24251/HICSS.2021.281
Horvat, D., Baumgartner, M., Kinkel, S., & Mikalef, P. (2023). Examining Heterogeneous Patterns of AI Capabilities. 619–633. https://doi.org/10.1007/978-3-031-43666-6_42 DOI: https://doi.org/10.1007/978-3-031-43666-6_42
Kar, S., Kar, A. K., & Gupta, M. P. (2021). Modeling Drivers and Barriers of Artificial Intelligence Adoption: Insights From a Strategic Management Perspective. Intelligent Sys in Account, 28(4), 217–238. https://doi.org/10.1002/isaf.1503 DOI: https://doi.org/10.1002/isaf.1503
Kumar, V., Kumar, M., & Sahni, G. S. (2020). An Experimental Study to Determine the Effect of Iron Supplement in Cognitive Enhancement in Children. International Journal of Medical and Biomedical Studies, 4(4). https://doi.org/10.32553/ijmbs.v4i4.1357 DOI: https://doi.org/10.32553/ijmbs.v4i4.1357
Li, D., Deng, L., Cai, Z., & Souri, A. (2020). Blockchain as a Service Models in the Internet of Things Management: Systematic Review. Transactions on Emerging Telecommunications Technologies, 33(4). https://doi.org/10.1002/ett.4139 DOI: https://doi.org/10.1002/ett.4139
Liu, J. (2024). The Impact of the Development of Artificial Intelligence on Unemployment Rates. Advances in Economics Management and Political Sciences, 121(1), 154–163. https://doi.org/10.54254/2754-1169/121/20242410 DOI: https://doi.org/10.54254/2754-1169/121/20242410
Lobo, S. R., & Samaranayake, P. (2020). An Innovation Management Assessment Framework. Benchmarking an International Journal, 27(5), 1633–1656. https://doi.org/10.1108/bij-02-2019-0085 DOI: https://doi.org/10.1108/BIJ-02-2019-0085
Mazid, I., Wallace, A. A., Chen, J., & Choi, S. (2024). Exploring Key Drivers for Embracing Artificial Intelligence in Public Relations Pedagogy. Journalism & Mass Communication Educator, 80(2), 175–196. https://doi.org/10.1177/10776958241299075 DOI: https://doi.org/10.1177/10776958241299075
Mikalef, P., & Krogstie, J. (2020). Examining the Interplay Between Big Data Analytics and Contextual Factors in Driving Process Innovation Capabilities. European Journal of Information Systems, 29(3), 260–287. https://doi.org/10.1080/0960085x.2020.1740618 DOI: https://doi.org/10.1080/0960085X.2020.1740618
Mishra, A. N., & Pani, A. K. (2020). Business Value Appropriation Roadmap for Artificial Intelligence. Vine Journal of Information and Knowledge Management Systems, 51(3), 353–368. https://doi.org/10.1108/vjikms-07-2019-0107 DOI: https://doi.org/10.1108/VJIKMS-07-2019-0107
Rathor, K. (2024). Exploring the Challenges and Opportunities of Implementing Artificial Intelligence in Supply Chain Management: A Survey-Based Study in Asian Manufacturing Sector. International Research Journal of Modernization in Engineering Technology and Science. https://doi.org/10.56726/irjmets49724 DOI: https://doi.org/10.56726/IRJMETS49724
Rubio‐Andrés, M., & Abril, C. (2023). Sustainability Oriented Innovation and Organizational Values: A Cluster Analysis. The Journal of Technology Transfer, 49(1), 1–18. https://doi.org/10.1007/s10961-022-09979-1 DOI: https://doi.org/10.1007/s10961-022-09979-1
Rusch, A., DeCamp, L. M., Liebrecht, C., Choi, S. Y., Dalack, G. W., Kilbourne, A. M., & Smith, S. N. (2021). A Roadmap to Inform the Implementation of Evidence-Based Collaborative Care Interventions in Communities: Insights From the Michigan Mental Health Integration Partnership. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.655999 DOI: https://doi.org/10.3389/fpubh.2021.655999
Shivaprakash, K. N., Swami, N., Mysorekar, S., Arora, R., Gangadharan, A., Vohra, K., Jadeyegowda, M., & Kiesecker, J. M. (2022). Potential for Artificial Intelligence (AI) and Machine Learning (ML) Applications in Biodiversity Conservation, Managing Forests, and Related Services in India. Sustainability, 14(12), 7154. https://doi.org/10.3390/su14127154 DOI: https://doi.org/10.3390/su14127154
Sony, M., Antony, J., & Dermott, O. M. (2022). How Do the Technological Capability and Strategic Flexibility of an Organization Impact Its Successful Implementation of Industry 4.0? A qualitative Viewpoint. Benchmarking an International Journal, 30(3), 924–949. https://doi.org/10.1108/bij-09-2021-0541 DOI: https://doi.org/10.1108/BIJ-09-2021-0541
Urban, B., & Wood, E. (2017). The Innovating Firm as Corporate Entrepreneurship. European Journal of Innovation Management, 20(4), 534–556. https://doi.org/10.1108/ejim-10-2016-0100 DOI: https://doi.org/10.1108/EJIM-10-2016-0100
Vassallo, J. P., Prabhu, J., Banerjee, S., & Voola, R. (2019). The Role of Hybrid Organizations in Scaling Social Innovations in Bottom‐of‐the‐Pyramid Markets: Insights From Microfinance in India. Journal of Product Innovation Management, 36(6), 744–763. https://doi.org/10.1111/jpim.12504 DOI: https://doi.org/10.1111/jpim.12504
Vigfússon, K., Jóhannsdóttir, L., & Ólafsson, S. (2021). Obstacles to Strategy Implementation and Success Factors: A Review of Empirical Literature. Strategic Management, 26(2), 12–30. https://doi.org/10.5937/straman2102012v DOI: https://doi.org/10.5937/StraMan2102012V
Vignoli, M., Roversi, S., Jatwani, C., & Tiriduzzi, M. (2021). Human and Planet Centered Approach: Prosperity Thinking in Action. Proceedings of the Design Society, 1, 1797–1806. https://doi.org/10.1017/pds.2021.441 DOI: https://doi.org/10.1017/pds.2021.441
Wael, H. A., Abdallah, W., Ghura, H., & Buallay, A. (2023). Factors Influencing Artificial Intelligence Adoption in the Accounting Profession: The Case of Public Sector in Kuwait. Competitiveness Review an International Business Journal Incorporating Journal of Global Competitiveness, 34(1), 3–27. https://doi.org/10.1108/cr-09-2022-0137 DOI: https://doi.org/10.1108/CR-09-2022-0137
Wang, B. (2022). Absolute Number Heuristic in Discount Frames. Marketing Intelligence & Planning, 40(7), 871–883. https://doi.org/10.1108/mip-03-2022-0113 DOI: https://doi.org/10.1108/MIP-03-2022-0113
Wang, Y.-H., & Lin, G.-Y. (2022). Exploring AI-healthcare Innovation: Natural Language Processing-Based Patents Analysis for Technology-Driven Roadmapping. Kybernetes, 52(4), 1173–1189. https://doi.org/10.1108/k-03-2021-0170 DOI: https://doi.org/10.1108/K-03-2021-0170
Xia, J., & Yi, Z. (2019). The Impact of Public R &Amp;amp; D Subsidies on Private R &Amp;amp; D Expenditure and Its Innovation Performance—An Empirical Study Based on Industrial Enterprises in Guangdong Province. Modern Economy, 10(01), 261–280. https://doi.org/10.4236/me.2019.101018 DOI: https://doi.org/10.4236/me.2019.101018


