Business Analytics as a Strategic Resource for Innovation: A Comprehensive Review
DOI:
https://doi.org/10.61978/novatio.v2i2.1001Keywords:
Business Analytics, Innovation Performance, Big Data, Predictive Analytics, Organizational Capabilities, Strategic Agility, Digital TransformationAbstract
This study provides a narrative review of the role of business analytics in driving organizational innovation performance. The purpose is to synthesize current empirical and theoretical contributions with a focus on organizational capabilities, market dynamics, leadership, culture, and global perspectives. Literature was identified through major databases (Scopus, Web of Science, PubMed, and IEEE Xplore) with inclusion criteria emphasizing peer-reviewed studies from the last decade. Findings highlight four key insights: organizational capabilities mediate the translation of analytics into innovation; market dynamism moderates its effectiveness; leadership and culture are decisive in embedding analytics; and adoption disparities persist between developed and developing economies. The review concludes that business analytics strengthens strategic agility and sustainable competitiveness, though barriers such as data quality, infrastructure, and ethics remain. Future research should explore longitudinal impacts, small and medium enterprises, and cross-country comparisons to optimize analytics-driven innovation.
References
Alghamdi, O., & Agag, G. (2023). Boosting innovation performance through big data analytics powered by artificial intelligence use: an empirical exploration of the role of strategic agility and market turbulence. Sustainability, 15(19), 14296. https://doi.org/10.3390/su151914296 DOI: https://doi.org/10.3390/su151914296
Amer, M., Radwhi, A., Ali, A., & Ali, A. (2022). An integrated digital collaborative work environment for drilling. https://doi.org/10.2523/iptc-22546-ea DOI: https://doi.org/10.2523/IPTC-22546-EA
Charles, V., & Emrouznejad, A. (2018). Big data for the greater good: an introduction. (pp. 1–18). https://doi.org/10.1007/978-3-319-93061-9_1 DOI: https://doi.org/10.1007/978-3-319-93061-9_1
Coleman, S., Göb, R., Manco, G., Pievatolo, A., Tort‐Martorell, X., & Reis, M. (2016). How can SMEs benefit from big data? Challenges and a path forward. Quality and Reliability Engineering International, 32(6), 2151-2164. https://doi.org/10.1002/qre.2008 DOI: https://doi.org/10.1002/qre.2008
Damian, A., Piciu, L., Turlea, S., & Țăpuș, N. (2019). Advanced customer activity prediction based on deep hierarchic encoder-decoders. (pp. 403–409). https://doi.org/10.1109/cscs.2019.00074 DOI: https://doi.org/10.1109/CSCS.2019.00074
Franciosa, P., Sun, T., Ceglarek, D., Gerbino, S., & Lanzotti, A. (2019). Multi-wave light technology enabling closed-loop in-process quality control for automotive battery assembly with remote laser welding. (p. 9). https://doi.org/10.1117/12.2526075 DOI: https://doi.org/10.1117/12.2526075
Hossain, F., Ahmed, G., Shuvo, S., Kona, A., Raina, M., & Shikder, F. (2024). Unlocking artificial intelligence for strategic market development and business growth: Innovations, opportunities, and future directions. Edelweiss Applied Science and Technology, 8(6), 5825-5846. https://doi.org/10.55214/25768484.v8i6.3263 DOI: https://doi.org/10.55214/25768484.v8i6.3263
Iftikhar, R., & Khan, M. (2022). Social media big data analytics for demand forecasting. (pp. 902–920). https://doi.org/10.4018/978-1-6684-3662-2.ch042 DOI: https://doi.org/10.4018/978-1-6684-3662-2.ch042
Imran, M., Abdullah, A., & Rehman, S. (2025). Exploring the triad influence of service innovation, service quality and customer orientation between big data analytics and hotel performance. Journal of Hospitality and Tourism Insights. https://doi.org/10.1108/jhti-10-2024-1067 DOI: https://doi.org/10.1108/JHTI-10-2024-1067
Jin, K., Zhong, Z., & Zhao, E. (2024). Sustainable digital marketing under big data: An AI random forest model approach. IEEE Transactions on Engineering Management, 71, 3566-3579. https://doi.org/10.1109/tem.2023.3348991 DOI: https://doi.org/10.1109/TEM.2023.3348991
Khan, B., Naseem, R., Shah, M., Wakil, K., Khan, A., Uddin, M., … & Mahmoud, M. (2021). Software defect prediction for healthcare big data: An empirical evaluation of machine learning techniques. Journal of Healthcare Engineering, 2021, 1–16. https://doi.org/10.1155/2021/8899263 DOI: https://doi.org/10.1155/2021/8899263
Kumar, V., Vijayakumar, V., Gupta, M., Rodrigues, J., & Janu, N. (2022). AI empowered big data analytics for industrial applications. Journal of Universal Computer Science, 28(9), 877-881. https://doi.org/10.3897/jucs.94155 DOI: https://doi.org/10.3897/jucs.94155
Lee, J., Azamfar, M., Singh, J., & Siahpour, S. (2020). Integration of digital twin and deep learning in cyber‐physical systems: Towards smart manufacturing. IET Collaborative Intelligent Manufacturing, 2(1), 34-36. https://doi.org/10.1049/iet-cim.2020.0009 DOI: https://doi.org/10.1049/iet-cim.2020.0009
Mathivanan, S., & Jayagopal, P. (2020). Recent development in big data analytics. (pp. 1640–1663). https://doi.org/10.4018/978-1-7998-7705-9.ch072 DOI: https://doi.org/10.4018/978-1-7998-7705-9.ch072
Mulunjkar, A., Deshpande, A., Steinke, S., Chartier, B., & Kuwertz, L. (2019). Operational excellence and product reliability enhancement through big data analytics. https://doi.org/10.4043/29513-ms DOI: https://doi.org/10.4043/29513-MS
Pal, P., Thakur, H., & Grover, V. (2024). Innovation ecosystem cultivating environment for sustainable commercial success. (pp. 353–366). https://doi.org/10.4018/979-8-3693-5503-9.ch018 DOI: https://doi.org/10.4018/979-8-3693-5503-9.ch018
Proto, S., Corso, E., Apiletti, D., Cagliero, L., Cerquitelli, T., Malnati, G., … & Mazzucchi, D. (2020). REDTAG: A predictive maintenance framework for parcel delivery services. IEEE Access, 8, 14953-14964. https://doi.org/10.1109/access.2020.2966568 DOI: https://doi.org/10.1109/ACCESS.2020.2966568
Ramadan, M., Shuqqo, H., Qtaishat, L., Asmar, H., & Salah, B. (2020). Sustainable competitive advantage driven by big data analytics and innovation. Applied Sciences, 10(19), 6784. https://doi.org/10.3390/app10196784 DOI: https://doi.org/10.3390/app10196784
Schöggl, J., Rusch, M., Stumpf, L., & Baumgartner, R. (2023). Implementation of digital technologies for a circular economy and sustainability management in the manufacturing sector. Sustainable Production and Consumption, 35, 401-420. https://doi.org/10.1016/j.spc.2022.11.012 DOI: https://doi.org/10.1016/j.spc.2022.11.012
Shafqat, H., Zhang, B., Ahmed, M., Ullah, M., & Zulfiqar, M. (2024). Big data analytics capabilities and leadership: Catalysts of firm performance in telecommunications. Business Process Management Journal, 31(3), 928-947. https://doi.org/10.1108/bpmj-06-2024-0458 DOI: https://doi.org/10.1108/BPMJ-06-2024-0458
Sia, W., Ahmad, Z., Muhamad, S., Ali, A., & Hamdan, H. (2024). Effective risk management through data-driven HSE assurance program for safe execution project delivery. https://doi.org/10.2118/221994-ms DOI: https://doi.org/10.2118/221994-MS
Soliman, K., Nazneen, A., Ambreen, A., Haque, R., & Jeet, V. (2025). Business analytics as a driver of organizational performance: Evidence from the pharmaceutical industry. International Journal of Innovative Research and Scientific Studies, 8(2), 3857-3871. https://doi.org/10.53894/ijirss.v8i2.6114 DOI: https://doi.org/10.53894/ijirss.v8i2.6114
Song, X., & Han, W. (2023). Innovative AI regional economic development driven by information system innovation: Opportunities and challenges – a boosting factor from digitalization, business intelligence analytics. Journal of Information Systems Engineering & Management, 8(4), 23783. https://doi.org/10.55267/iadt.07.14035 DOI: https://doi.org/10.55267/iadt.07.14035
Tan, C., & Haji, M. (2017). Big data educational portal for small and medium sized enterprises (SMEs). (pp. 11–15). https://doi.org/10.1145/3175684.3175688 DOI: https://doi.org/10.1145/3175684.3175688
Taifa, I., & Nzowa, J. (2025). Implementing supply chain management 4.0: Potential driving forces and strategies from an empirical study of pharmaceutical industries. Engineering Reports, 7(6). https://doi.org/10.1002/eng2.70190 DOI: https://doi.org/10.1002/eng2.70190
Whitman, M. (2021). Modeling ethics: Approaches to data creep in higher education. Science and Engineering Ethics, 27(6). https://doi.org/10.1007/s11948-021-00346-1 DOI: https://doi.org/10.1007/s11948-021-00346-1


