Digital Transformation through Big Data: Implications for Global Product Development
DOI:
https://doi.org/10.61978/novatio.v2i4.1005Keywords:
Big Data, Predictive Analytics, Product Development, Innovation, Digital Twin, Predictive MaintenanceAbstract
Big Data and Predictive Analytics (BDPA) have emerged as transformative forces in product development, creating opportunities to enhance innovation, efficiency, and resilience. This review highlights BDPA’s contributions to value creation by improving customer insights, optimizing design, strengthening operational efficiency, and mitigating risks. It synthesizes empirical and conceptual studies from multidisciplinary databases to demonstrate how BDPA shapes competitiveness across sectors. Comparative findings reveal adoption disparities between advanced and emerging economies, where infrastructural and skill-related constraints limit effectiveness. Addressing these barriers requires investment in human capital, cross-departmental collaboration, and supportive policy frameworks. Future research should prioritize longitudinal and sector-specific approaches to better capture BDPA’s sustained impacts and contextual dynamics.
References
Charles, V., & Emrouznejad, A. (2018). Big data for the greater good: An introduction. 1–18. https://doi.org/10.1007/978-3-319-93061-9_1 DOI: https://doi.org/10.1007/978-3-319-93061-9_1
Coleman, S., Göb, R., Manco, G., Pievatolo, A., Tort‐Martorell, X., & Reis, M. (2016). How can SMEs benefit from big data? Challenges and a path forward. Quality and Reliability Engineering International, 32(6), 2151–2164. https://doi.org/10.1002/qre.2008 DOI: https://doi.org/10.1002/qre.2008
Damian, A., Piciu, L., Turlea, S., & Țăpuș, N. (2019). Advanced customer activity prediction based on deep hierarchic encoder-decoders. 403–409. https://doi.org/10.1109/cscs.2019.00074 DOI: https://doi.org/10.1109/CSCS.2019.00074
Iftikhar, R., & Khan, M. (2022). Social media big data analytics for demand forecasting. 902–920. https://doi.org/10.4018/978-1-6684-3662-2.ch042 DOI: https://doi.org/10.4018/978-1-6684-3662-2.ch042
Jin, K., Zhong, Z., & Zhao, E. (2024). Sustainable digital marketing under big data: An AI random forest model approach. IEEE Transactions on Engineering Management, 71, 3566–3579. https://doi.org/10.1109/tem.2023.3348991 DOI: https://doi.org/10.1109/TEM.2023.3348991
Kumar, V., Vijayakumar, V., Gupta, M., Rodrigues, J., & Janu, N. (2022). AI empowered big data analytics for industrial applications. JUCS – Journal of Universal Computer Science, 28(9), 877–881. https://doi.org/10.3897/jucs.94155 DOI: https://doi.org/10.3897/jucs.94155
Lainjo, B. (2019). Enhancing program management with predictive analytics algorithms (PAAs). International Journal of Machine Learning and Computing, 9(5), 539–553. https://doi.org/10.18178/ijmlc.2019.9.5.838 DOI: https://doi.org/10.18178/ijmlc.2019.9.5.838
Lee, J., Azamfar, M., Singh, J., & Siahpour, S. (2020). Integration of digital twin and deep learning in cyber‐physical systems: Towards smart manufacturing. IET Collaborative Intelligent Manufacturing, 2(1), 34–36. https://doi.org/10.1049/iet-cim.2020.0009 DOI: https://doi.org/10.1049/iet-cim.2020.0009
Mathivanan, S., & Jayagopal, P. (2020). Recent development in big data analytics. 1640–1663. https://doi.org/10.4018/978-1-7998-7705-9.ch072 DOI: https://doi.org/10.4018/978-1-7998-7705-9.ch072
Mulunjkar, A., Deshpande, A., Steinke, S., Chartier, B., & Kuwertz, L. (2019). Operational excellence and product reliability enhancement through big data analytics. https://doi.org/10.4043/29513-ms DOI: https://doi.org/10.4043/29513-MS
Nikitjuk, D., Korosteleva, M., & Tarmaeva, I. (2025). Sports nutrition as an example of effective implementation of innovative trends in nutrition: Personalization and digitalization (literature review). Health Care of the Russian Federation, 69(1), 65–69. https://doi.org/10.47470/0044-197x-2025-69-1-65-69 DOI: https://doi.org/10.47470/0044-197X-2025-69-1-65-69
Proto, S., Corso, E., Apiletti, D., Cagliero, L., Cerquitelli, T., Malnati, G., … & Mazzucchi, D. (2020). REDTag: A predictive maintenance framework for parcel delivery services. IEEE Access, 8, 14953–14964. https://doi.org/10.1109/access.2020.2966568 DOI: https://doi.org/10.1109/ACCESS.2020.2966568
Schöggl, J., Rusch, M., Stumpf, L., & Baumgartner, R. (2023). Implementation of digital technologies for a circular economy and sustainability management in the manufacturing sector. Sustainable Production and Consumption, 35, 401–420. https://doi.org/10.1016/j.spc.2022.11.012 DOI: https://doi.org/10.1016/j.spc.2022.11.012
Sia, W., Ahmad, Z., Muhamad, S., Ali, A., & Hamdan, H. (2024). Effective risk management through data-driven HSE assurance program for safe execution project delivery. https://doi.org/10.2118/221994-ms DOI: https://doi.org/10.2118/221994-MS
Taifa, I., & Nzowa, J. (2025). Implementing supply chain management 4.0: Potential driving forces and strategies from an empirical study of pharmaceutical industries. Engineering Reports, 7(6). https://doi.org/10.1002/eng2.70190 DOI: https://doi.org/10.1002/eng2.70190
Tripoli, M., & Schmidhuber, J. (2020). Optimising traceability in trade for live animals and animal products with digital technologies. Revue Scientifique et Technique de l’OIE, 39(1), 235–244. https://doi.org/10.20506/rst.39.1.3076 DOI: https://doi.org/10.20506/rst.39.1.3076


