Big Data in Context: A Narrative Review of Opportunities, Barriers, and Global Perspectives
DOI:
https://doi.org/10.61978/novatio.v2i2.1000Keywords:
Big Data Analytics, Predictive Analytics, Digital Transformation, Smart Manufacturing, Organizational Outcomes, SMEs, Data GovernanceAbstract
This narrative review examines the transformative role of big data in organizational performance, predictive analytics, and smart manufacturing, while highlighting disparities in adoption between developed and developing economies. Literature was collected from major databases (Scopus, Web of Science, PubMed, and Google Scholar) using rigorous criteria to ensure methodological validity. Findings reveal that big data improves decision-making, efficiency, and risk management, with digital twin technologies enhancing reliability in manufacturing. However, barriers remain, including infrastructure gaps, skill shortages, resistance to change, and data governance challenges—especially among SMEs and rural communities. The review underscores the need for targeted policy interventions and cross-sector collaborations to close these gaps. Its unique contribution lies in synthesizing global disparities and offering integrative strategies for inclusive, sustainable big data adoption.
References
Abedsoltan, H. (2023). Covid‐19 and the chemical industry: impacts, challenges, and opportunities. Journal of Chemical Technology & Biotechnology, 98(12), 2789-2797. https://doi.org/10.1002/jctb.7531 DOI: https://doi.org/10.1002/jctb.7531
Alam, K., Ali, M., Erdiaw‐Kwasie, M., Murray, P., & Wiesner, R. (2022). Digital transformation among SMEs: does gender matter? Sustainability, 14(1), 535. https://doi.org/10.3390/su14010535 DOI: https://doi.org/10.3390/su14010535
Amer, M., Radwhi, A., Ali, A., & Ali, A. (2022). An integrated digital collaborative work environment for drilling. https://doi.org/10.2523/iptc-22546-ea DOI: https://doi.org/10.2523/IPTC-22546-EA
Bhimavarapu, U. (2025). Building smart organizations leveraging power from emerging technologies in industry 5.0., 87-118. https://doi.org/10.4018/979-8-3693-9072-6.ch005 DOI: https://doi.org/10.4018/979-8-3693-9072-6.ch005
Brunet, M., Motamedi, A., Guénette, L., & Forgues, D. (2018). Analysis of BIM use for asset management in three public organizations in Québec, Canada. Built Environment Project and Asset Management, 9(1), 153-167. https://doi.org/10.1108/bepam-02-2018-0046 DOI: https://doi.org/10.1108/BEPAM-02-2018-0046
Chandratreya, A. (2025). Building a future-ready public sector cultural shifts in digital governance., 517-544. https://doi.org/10.4018/979-8-3693-6547-2.ch019 DOI: https://doi.org/10.4018/979-8-3693-6547-2.ch019
Charles, V., & Emrouznejad, A. (2018). Big data for the greater good: an introduction., 1-18. https://doi.org/10.1007/978-3-319-93061-9_1 DOI: https://doi.org/10.1007/978-3-319-93061-9_1
Coleman, S., Göb, R., Manco, G., Pievatolo, A., Tort‐Martorell, X., & Reis, M. (2016). How can SMEs benefit from big data? Challenges and a path forward. Quality and Reliability Engineering International, 32(6), 2151-2164. https://doi.org/10.1002/qre.2008 DOI: https://doi.org/10.1002/qre.2008
Damian, A., Piciu, L., Turlea, S., & Țăpuș, N. (2019). Advanced customer activity prediction based on deep hierarchic encoder-decoders., 403-409. https://doi.org/10.1109/cscs.2019.00074 DOI: https://doi.org/10.1109/CSCS.2019.00074
Franciosa, P., Sun, T., Ceglarek, D., Gerbino, S., & Lanzotti, A. (2019). Multi-wave light technology enabling closed-loop in-process quality control for automotive battery assembly with remote laser welding., 9. https://doi.org/10.1117/12.2526075 DOI: https://doi.org/10.1117/12.2526075
Gacser, Z., Bourke, S., Hosszú, D., & Daniels, S. (2024). System change in practice: a report from the EHC think tank workstreams on access equity and future care pathways. The Journal of Haemophilia Practice, 11(1), 99-107. https://doi.org/10.2478/jhp-2024-0017 DOI: https://doi.org/10.2478/jhp-2024-0017
Gallese, C., Falletti, E., Nobile, M., Ferrario, L., Schettini, F., & Foglia, E. (2020). Preventing litigation with a predictive model of COVID-19 ICUs occupancy., 2111-2116. https://doi.org/10.1109/bigdata50022.2020.9378295 DOI: https://doi.org/10.1109/BigData50022.2020.9378295
Garouani, M., Ahmad, A., Bouneffa, M., Hamlich, M., Bourguin, G., & Lewandowski, A. (2022). Using meta-learning for automated algorithms selection and configuration: an experimental framework for industrial big data. Journal of Big Data, 9(1). https://doi.org/10.1186/s40537-022-00612-4 DOI: https://doi.org/10.1186/s40537-022-00612-4
Holroyd, C. (2019). Digital content promotion in Japan and South Korea: government strategies for an emerging economic sector. Asia & the Pacific Policy Studies, 6(3), 290-307. https://doi.org/10.1002/app5.277 DOI: https://doi.org/10.1002/app5.277
Iftikhar, R., & Khan, M. (2022). Social media big data analytics for demand forecasting., 902-920. https://doi.org/10.4018/978-1-6684-3662-2.ch042 DOI: https://doi.org/10.4018/978-1-6684-3662-2.ch042
Jha, S. (2022). The counterfeit degree certificate: application of blockchain technology in higher education in India. Library Hi Tech News, 40(2), 20-24. https://doi.org/10.1108/lhtn-02-2022-0023 DOI: https://doi.org/10.1108/LHTN-02-2022-0023
Jin, K., Zhong, Z., & Zhao, E. (2024). Sustainable digital marketing under big data: an AI random forest model approach. IEEE Transactions on Engineering Management, 71, 3566-3579. https://doi.org/10.1109/tem.2023.3348991 DOI: https://doi.org/10.1109/TEM.2023.3348991
Khan, B., Naseem, R., Shah, M., Wakil, K., Khan, A., Uddin, M., … & Mahmoud, M. (2021). Software defect prediction for healthcare big data: an empirical evaluation of machine learning techniques. Journal of Healthcare Engineering, 2021, 1-16. https://doi.org/10.1155/2021/8899263 DOI: https://doi.org/10.1155/2021/8899263
Koltes, J., Cole, J., Clemmens, R., Dilger, R., Kramer, L., Lunney, J., … & Reecy, J. (2019). A vision for development and utilization of high-throughput phenotyping and big data analytics in livestock. Frontiers in Genetics, 10. https://doi.org/10.3389/fgene.2019.01197 DOI: https://doi.org/10.3389/fgene.2019.01197
Kumar, V., Vijayakumar, V., Gupta, M., Rodrigues, J., & Janu, N. (2022). AI empowered big data analytics for industrial applications. J.UCS - Journal of Universal Computer Science, 28(9), 877-881. https://doi.org/10.3897/jucs.94155 DOI: https://doi.org/10.3897/jucs.94155
Lainjo, B. (2019). Enhancing program management with predictive analytics algorithms (PAAS). International Journal of Machine Learning and Computing, 9(5), 539-553. https://doi.org/10.18178/ijmlc.2019.9.5.838 DOI: https://doi.org/10.18178/ijmlc.2019.9.5.838
Lee, J., Azamfar, M., Singh, J., & Siahpour, S. (2020). Integration of digital twin and deep learning in cyber‐physical systems: towards smart manufacturing. IET Collaborative Intelligent Manufacturing, 2(1), 34-36. https://doi.org/10.1049/iet-cim.2020.0009 DOI: https://doi.org/10.1049/iet-cim.2020.0009
Li, H., & Zhou, Q. (2023). Construction of digital capability evaluation index system for manufacturing enterprises. Manufacturing and Service Operations Management, 4(5). https://doi.org/10.23977/msom.2023.040512 DOI: https://doi.org/10.23977/msom.2023.040512
Liao, R., & Feng, F. (2023). How do board network and academic connection promote digital transformation? Kybernetes, 53(11), 4592-4614. https://doi.org/10.1108/k-02-2023-0302 DOI: https://doi.org/10.1108/K-02-2023-0302
Lisnawati, L., Aryati, T., & Gunawan, J. (2024). Implementation of digital innovation on sustainability performance: the moderating role of green accounting in the industrial sector. Eastern-European Journal of Enterprise Technologies, 1(13 (127)), 59-68. https://doi.org/10.15587/1729-4061.2024.298639 DOI: https://doi.org/10.15587/1729-4061.2024.298639
Mathivanan, S., & Jayagopal, P. (2020). Recent development in big data analytics., 1640-1663. https://doi.org/10.4018/978-1-7998-7705-9.ch072 DOI: https://doi.org/10.4018/978-1-7998-7705-9.ch072
Mosch, L., Poncette, A., Spies, C., Weber‐Carstens, S., Schieler, M., Krampe, H., … & Balzer, F. (2022). Creation of an evidence-based implementation framework for digital health technology in the intensive care unit: qualitative study. JMIR Formative Research, 6(4), e22866. https://doi.org/10.2196/22866 DOI: https://doi.org/10.2196/22866
Müller, M., Vaseková, V., Kročil, O., & Kosina, D. (2024). Covid-19 as an advantage or a disaster? Crisis and change management strategies of Hong Kong social entrepreneurs during the pandemic. Journal of Organizational Change Management, 38(1), 25-58. https://doi.org/10.1108/jocm-02-2024-0101 DOI: https://doi.org/10.1108/JOCM-02-2024-0101
Piciu, L., Damian, A., Țăpuș, N., Simion-Constantinescu, A., & Dumitrescu, B. (2018). Deep recommender engine based on efficient product embeddings neural pipeline., 1-6. https://doi.org/10.1109/roedunet.2018.8514141 DOI: https://doi.org/10.1109/ROEDUNET.2018.8514141
Proto, S., Corso, E., Apiletti, D., Cagliero, L., Cerquitelli, T., Malnati, G., … & Mazzucchi, D. (2020). Redtag: a predictive maintenance framework for parcel delivery services. IEEE Access, 8, 14953-14964. https://doi.org/10.1109/access.2020.2966568 DOI: https://doi.org/10.1109/ACCESS.2020.2966568
Rahman, M., Ghazali, A., & Sawal, M. (2025). Exploring organizational factors of resistance to technology adoption in university libraries in Bangladesh. Information Development. https://doi.org/10.1177/02666669251325447 DOI: https://doi.org/10.1177/02666669251325447
Rees, C., Hand, B., Carter, S., Bargeron, C., Cline, T., Daniel, W., … & Luikart, G. (2022). A framework to integrate innovations in invasion science for proactive management. Biological Reviews, 97(4), 1712-1735. https://doi.org/10.1111/brv.12859 DOI: https://doi.org/10.1111/brv.12859
Sarto, N., Bocchialini, E., Gai, L., & Ielasi, F. (2024). Digital banking: how social media is shaping the game. Qualitative Research in Financial Markets, 17(2), 348-369. https://doi.org/10.1108/qrfm-12-2023-0314 DOI: https://doi.org/10.1108/QRFM-12-2023-0314
Schöggl, J., Rusch, M., Stumpf, L., & Baumgartner, R. (2023). Implementation of digital technologies for a circular economy and sustainability management in the manufacturing sector. Sustainable Production and Consumption, 35, 401-420. https://doi.org/10.1016/j.spc.2022.11.012 DOI: https://doi.org/10.1016/j.spc.2022.11.012
Sia, W., Ahmad, Z., Muhamad, S., Ali, A., & Hamdan, H. (2024). Effective risk management through data-driven HSE assurance program for safe execution project delivery. https://doi.org/10.2118/221994-ms DOI: https://doi.org/10.2118/221994-MS
Sterrett, W., & Richardson, J. (2022). Innovation beyond the pandemic: the powerful potential of digital principal leadership. Development in Learning Organizations an International Journal, 37(2), 14-17. https://doi.org/10.1108/dlo-03-2022-0059 DOI: https://doi.org/10.1108/DLO-03-2022-0059
Subrahmanyam, S. (2025). Building a digital-first organizational culture., 101-124. https://doi.org/10.4018/979-8-3373-1005-3.ch004 DOI: https://doi.org/10.4018/979-8-3373-1005-3.ch004
Taifa, I., & Nzowa, J. (2025). Implementing supply chain management 4.0: potential driving forces and strategies from an empirical study of pharmaceutical industries. Engineering Reports, 7(6). https://doi.org/10.1002/eng2.70190 DOI: https://doi.org/10.1002/eng2.70190
Tan, C., & Haji, M. (2017). Big data educational portal for small and medium sized enterprises (SMEs)., 11-15. https://doi.org/10.1145/3175684.3175688 DOI: https://doi.org/10.1145/3175684.3175688
Warner, K., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: an ongoing process of strategic renewal. Long Range Planning, 52(3), 326-349. https://doi.org/10.1016/j.lrp.2018.12.001 DOI: https://doi.org/10.1016/j.lrp.2018.12.001
Whitman, M. (2021). Modeling ethics: approaches to data creep in higher education. Science and Engineering Ethics, 27(6). https://doi.org/10.1007/s11948-021-00346-1 DOI: https://doi.org/10.1007/s11948-021-00346-1


