Artificial Intelligence and the Future of Financial Governance
DOI:
https://doi.org/10.61978/moneta.v3i2.916Keywords:
Artificial Intelligence, Financial Decision-Making, Risk Management, Portfolio Optimization, Fraud Detection, Financial Reporting, Sustainable FinanceAbstract
Artificial Intelligence (AI) is increasingly recognized as a transformative force in financial decision-making, with applications spanning risk prediction, portfolio optimization, fraud detection, corporate financial reporting, consumer finance, and market sentiment analysis. This narrative review aims to synthesize current knowledge on the opportunities and risks associated with AI adoption in the financial sector. Literature was collected from leading academic databases, including Scopus, Web of Science, and Google Scholar, using keywords such as “Artificial Intelligence,” “Financial Decision-Making,” “Risk Management,” and “Portfolio Optimization.” Inclusion criteria prioritized peer-reviewed studies published between 2010 and 2025. Findings reveal that AI consistently outperforms traditional approaches in risk prediction and credit assessment, with neural networks and hybrid models achieving predictive accuracies exceeding 85%. AI-driven robo-advisors provide higher investment returns and expand financial inclusion by reducing cost barriers. In fraud detection, adaptive algorithms achieve accuracy rates up to 90% and improve resilience against evolving threats. Corporate reporting benefits from AI-driven transparency, particularly when supported by high-quality auditing. Moreover, AI tools promote sustainable financial practices by aligning investment strategies with social and environmental objectives, while advanced models like GPT enhance market sentiment analysis. However, the review also identifies key challenges, including black-box opacity, algorithmic bias, systemic vulnerabilities, and regulatory uncertainties. Addressing these issues requires explainable AI, algorithmic audits, representative datasets, and collaborative governance mechanisms. This review concludes that while AI holds enormous potential to transform global financial systems, its sustainable and equitable integration depends on balancing innovation with regulatory adaptation, transparency, and fairness.
References
Abrokwah-Larbi, K., & Awuku-Larbi, Y. (2023). The impact of artificial intelligence in marketing on the performance of business organizations: evidence from SMEs in an emerging economy. Journal of Entrepreneurship in Emerging Economies, 16(4), 1090-1117. https://doi.org/10.1108/jeee-07-2022-0207 DOI: https://doi.org/10.1108/JEEE-07-2022-0207
Akour, I., Alzyoud, M., Alquqa, E., Tariq, E., Alzboun, N., Al‐Hawary, S., … & Alshurideh, M. (2024). Artificial intelligence and financial decisions: empirical evidence from developing economies. International Journal of Data and Network Science, 8(1), 101-108. https://doi.org/10.5267/j.ijdns.2023.10.013 DOI: https://doi.org/10.5267/j.ijdns.2023.10.013
Alhazmi, A., Islam, S., & Prokofieva, M. (2025). The impact of artificial intelligence adoption on the quality of financial reports on the Saudi stock exchange. International Journal of Financial Studies, 13(1), 21. https://doi.org/10.3390/ijfs13010021 DOI: https://doi.org/10.3390/ijfs13010021
Aysan, A., Dınçer, H., Ünal, İ., & Yüksel, S. (2024). AI development in financial markets: a balanced scorecard analysis of its impact on sustainable development goals (February 2024). Kybernetes. https://doi.org/10.1108/k-05-2024-1181 DOI: https://doi.org/10.1108/K-05-2024-1181
Awad, A., Akola, O., Amer, M., & Mousa, E. (2025). Artificial intelligence in financial statement preparation: enhancing accuracy, compliance, and corporate performance. International Journal of Innovative Research and Scientific Studies, 8(2), 361-374. https://doi.org/10.53894/ijirss.v8i2.5166 DOI: https://doi.org/10.53894/ijirss.v8i2.5166
Bandara, R., Biswas, K., Akter, S., Shafique, S., & Rahman, M. (2025). Addressing algorithmic bias in AI‐driven HRM systems: implications for strategic HRM effectiveness. Human Resource Management Journal. https://doi.org/10.1111/1748-8583.12609 DOI: https://doi.org/10.1111/1748-8583.12609
Barone, M., Bussoli, C., & Fattobene, L. (2024). Digital financial consumers' decision-making: a systematic literature review and integrative framework. The International Journal of Bank Marketing, 42(7), 1978-2022. https://doi.org/10.1108/ijbm-07-2023-0405 DOI: https://doi.org/10.1108/IJBM-07-2023-0405
Biju, B. (2025). Artificial intelligence in investment and wealth management, 269-308. https://doi.org/10.4018/979-8-3373-4571-0.ch010 DOI: https://doi.org/10.4018/979-8-3373-4571-0.ch010
Buckmann, M., Haldane, A., & Hüser, A. (2021). Comparing minds and machines: implications for financial stability. Oxford Review of Economic Policy, 37(3), 479-508. https://doi.org/10.1093/oxrep/grab017 DOI: https://doi.org/10.1093/oxrep/grab017
Darji, D., Parikh, S., Patel, A., Patel, K., & Suthar, A. (2025). Measuring the impact of AI key metrics and KPIs in financial services, 337-370. https://doi.org/10.4018/979-8-3693-9944-6.ch018 DOI: https://doi.org/10.4018/979-8-3693-9944-6.ch018
Ding, L., Antonucci, G., & Venditti, M. (2024). Unveiling user responses to AI-powered personalised recommendations: a qualitative study of consumer engagement dynamics on Douyin. Qualitative Market Research: An International Journal, 28(2), 234-255. https://doi.org/10.1108/qmr-11-2023-0151 DOI: https://doi.org/10.1108/QMR-11-2023-0151
Dote-Pardo, J., Cordero-Díaz, M., Jaramillo, M., & Parra-Domínguez, J. (2025). Leveraging artificial intelligence for enhanced decision-making in finance: trends and future directions. Journal of Accounting Literature. https://doi.org/10.1108/jal-02-2025-0100 DOI: https://doi.org/10.1108/JAL-02-2025-0100
Draws, T., Szlávik, Z., Timmermans, B., Tintarev, N., Varshney, K., & Hind, M. (2021). Disparate impact diminishes consumer trust even for advantaged users, 135-149. https://doi.org/10.1007/978-3-030-79460-6_11 DOI: https://doi.org/10.1007/978-3-030-79460-6_11
Gao, K., & Zamanpour, A. (2024). How can AI-integrated applications affect the financial engineers’ psychological safety and work-life balance: Chinese and Iranian financial engineers and administrators’ perspectives. BMC Psychology, 12(1). https://doi.org/10.1186/s40359-024-02041-9 DOI: https://doi.org/10.1186/s40359-024-02041-9
Ghosn, F. (2025). Artificial intelligence in investment and wealth management, 1-42. https://doi.org/10.4018/979-8-3373-0129-7.ch001 DOI: https://doi.org/10.4018/979-8-3373-0129-7.ch001
Guerrero, W., Camacho-Galindo, S., Guerrero-Martin, L., Arévalo, J., Freitas, P., Gómes, V., … & Guerrero-Martín, C. (2024). Impacto de la inteligencia artificial en la toma de decisiones financieras: oportunidades y desafíos para los líderes empresariales. Dyna, 91(233), 168-177. https://doi.org/10.15446/dyna.v91n233.114660 DOI: https://doi.org/10.15446/dyna.v91n233.114660
Hilal, A., Alsolai, H., Al‐Wesabi, F., Al-Hagery, M., Hamza, M., & Duhayyim, M. (2022). Artificial intelligence based optimal functional link neural network for financial data science. Computers, Materials & Continua, 70(3), 6289-6304. https://doi.org/10.32604/cmc.2022.021522 DOI: https://doi.org/10.32604/cmc.2022.021522
Hoxha, E., Angjeli, A., & Bombaj, F. (2025). Implementation of modern information systems for automating accounting processes in the public sector: the experience of Albania. Scientific Bulletin of Mukachevo State University Series “Economics”, 61-74. https://doi.org/10.52566/msu-econ1.2025.61 DOI: https://doi.org/10.52566/msu-econ1.2025.61
Huang, T., & Lin, J. (2025). Firm performance on artificial intelligence implementation. Managerial and Decision Economics, 46(3), 1856-1870. https://doi.org/10.1002/mde.4486 DOI: https://doi.org/10.1002/mde.4486
Ibrahim, A., Almasria, N., Alhatabat, Z., Ershaid, D., & Aldboush, H. (2024). Transforming financial services with artificial intelligence and machine learning, 129-148. https://doi.org/10.4018/979-8-3693-8507-4.ch008 DOI: https://doi.org/10.4018/979-8-3693-8507-4.ch008
Issa, H., Dakroub, R., Lakkis, H., & Jaber, J. (2024). Navigating the decision‐making landscape of AI in risk finance: techno‐accountability unveiled. Risk Analysis, 45(4), 808-829. https://doi.org/10.1111/risa.14336 DOI: https://doi.org/10.1111/risa.14336
Jain, J. (2025). AI-driven learning in finance, 171-202. https://doi.org/10.4018/979-8-3373-3952-8.ch008 DOI: https://doi.org/10.4018/979-8-3373-3952-8.ch008
Khan, F., Jan, S., & Zia‐ul‐haq, H. (2024). Artificial intelligence adoption, audit quality and integrated financial reporting in GCC markets. Asian Review of Accounting, 33(3), 464-495. https://doi.org/10.1108/ara-03-2024-0085 DOI: https://doi.org/10.1108/ARA-03-2024-0085
Kuzior, A. (2024). Optimizing financial market stability through AI-based risk management, 45, 223-231. https://doi.org/10.21741/9781644903315-26 DOI: https://doi.org/10.21741/9781644903315-26
Leocádio, D., Malheiro, L., & Reis, J. (2025). Exploration of audit technologies in public security agencies: empirical research from Portugal. Journal of Risk and Financial Management, 18(2), 51. https://doi.org/10.3390/jrfm18020051 DOI: https://doi.org/10.3390/jrfm18020051
Maheshwari, H., & Samantaray, A. (2025). Beyond instinct: the influence of artificial intelligence on investment decision-making among Gen Z investors in emerging markets. International Journal of Accounting and Information Management. https://doi.org/10.1108/ijaim-10-2024-0371 DOI: https://doi.org/10.1108/IJAIM-10-2024-0371
Manta, A., Bădîrcea, R., Doran, N., Badareu, G., Gherțescu, C., & Popescu, J. (2024). Industry 4.0 transformation: analysing the impact of artificial intelligence on the banking sector through bibliometric trends. Electronics, 13(9), 1693. https://doi.org/10.3390/electronics13091693 DOI: https://doi.org/10.3390/electronics13091693
Mauro, A., Sestino, A., & Bacconi, A. (2022). Machine learning and artificial intelligence use in marketing: a general taxonomy. Italian Journal of Marketing, 2022(4), 439-457. https://doi.org/10.1007/s43039-022-00057-w DOI: https://doi.org/10.1007/s43039-022-00057-w
Mazur, K., Księżopolski, B., & Wierzbicki, A. (2015). On security management: improving energy efficiency, decreasing negative environmental impact, and reducing financial costs for data centers. Mathematical Problems in Engineering, 2015, 1-19. https://doi.org/10.1155/2015/418535 DOI: https://doi.org/10.1155/2015/418535
Policepatil, S., Sharma, J., Kumar, B., Singh, D., Pramanik, S., Gupta, A., … & Basha, S. (2024). Financial sector hyper-automation, 299-318. https://doi.org/10.4018/979-8-3693-3803-2.ch012 DOI: https://doi.org/10.4018/979-8-3693-3803-2.ch012
Pria, S., Rubaie, I., & Prasad, B. (2024). Charting the ethical landscape, 391-410. https://doi.org/10.4018/979-8-3693-6215-0.ch015 DOI: https://doi.org/10.4018/979-8-3693-6215-0.ch015
Sarin, A., & Sharma, S. (2024). The synergy of artificial intelligence and green finance for sustainable investment, 83-100. https://doi.org/10.4018/979-8-3693-7570-9.ch006 DOI: https://doi.org/10.4018/979-8-3693-7570-9.ch006
Sharma, P., Bhattacharya, S., & Bhattacharya, S. (2025). HR analytics and AI adoption in IT sector: reflections from practitioners. Journal of Work-Applied Management. https://doi.org/10.1108/jwam-12-2024-0179 DOI: https://doi.org/10.1108/JWAM-12-2024-0179
Shiyyab, F., Alzoubi, A., Obidat, Q., & Alshurafat, H. (2023). The impact of artificial intelligence disclosure on financial performance. International Journal of Financial Studies, 11(3), 115. https://doi.org/10.3390/ijfs11030115 DOI: https://doi.org/10.3390/ijfs11030115
Singh, B., Kaunert, C., & Gautam, R. (2024). Artificial intelligence in detecting herding and market overreaction, 1-22. https://doi.org/10.4018/979-8-3693-7827-4.ch001 DOI: https://doi.org/10.4018/979-8-3693-7827-4.ch001
Trincanato, E., & Vagnoni, E. (2024). Business intelligence and the leverage of information in healthcare organizations from a managerial perspective: a systematic literature review and research agenda. Journal of Health Organization and Management, 38(3), 305-330. https://doi.org/10.1108/jhom-02-2023-0039 DOI: https://doi.org/10.1108/JHOM-02-2023-0039
Wang, J., & Chen, Z. (2024). SPCM: a machine learning approach for sentiment-based stock recommendation system. IEEE Access, 12, 14116-14129. https://doi.org/10.1109/access.2024.3357114 DOI: https://doi.org/10.1109/ACCESS.2024.3357114
Watkins, E., Moss, E., Metcalf, J., Singh, R., & Elish, M. (2021). Governing algorithmic systems with impact assessments: six observations, 1010-1022. https://doi.org/10.1145/3461702.3462580 DOI: https://doi.org/10.1145/3461702.3462580
Yang, N. (2022). Financial big data management and control and artificial intelligence analysis method based on data mining technology. Wireless Communications and Mobile Computing, 2022, 1-13. https://doi.org/10.1155/2022/7596094 DOI: https://doi.org/10.1155/2022/7596094
Yaseen, H., & Al-Amarneh, A. (2025). Adoption of artificial intelligence-driven fraud detection in banking: the role of trust, transparency, and fairness perception in financial institutions in the United Arab Emirates and Qatar. Journal of Risk and Financial Management, 18(4), 217. https://doi.org/10.3390/jrfm18040217 DOI: https://doi.org/10.3390/jrfm18040217



