Cryptocurrency in Portfolio Management: Risk Return Optimization and Diversification Efficiency in Institutional Asset Allocation
DOI:
https://doi.org/10.61978/moneta.v3i2.823Keywords:
Cryptocurrency, Portfolio Diversification, GARCH Copula, Risk Return Analysis, Institutional Investment, Transaction Cost, Sharpe RatioAbstract
The growing institutional interest in cryptocurrencies has prompted renewed academic exploration into their role as alternative investment assets. This study investigates the risk return characteristics and diversification potential of cryptocurrencies specifically Bitcoin and Ethereum within mixed asset portfolios. Drawing on a combination of mean variance optimization, GARCH Copula modeling, and empirical simulations, the research evaluates performance metrics across various crypto allocation levels and market conditions. The analysis incorporates dynamic rebalancing, transaction cost modeling, Monte Carlo simulations, and historical stress tests to ensure results reflect real-world portfolio dynamics and market shocks. Key findings demonstrate that small allocations of cryptocurrency (1%–3%) can enhance Sharpe ratios and extend the efficient frontier under normal market conditions. However, during periods of systemic stress such as the COVID 19 pandemic and 2022 tech selloff correlations between cryptocurrencies and equities rise significantly, reducing diversification benefits. Transaction cost thresholds also play a pivotal role; diversification benefits tend to erode when trading costs exceed 2%. Overall, cryptocurrencies can enhance portfolio performance but only within a dynamic, risk-aware framework. Their integration must account for volatility, regulatory uncertainty, and infrastructure readiness. These insights contribute to both academic debate and practical asset allocation strategies.
References
Arafa, M. H., Liu, Y., & Wong, W.-K. (2023). Asset Allocation Under Constraint: Crypto Exposure and Portfolio Fragility. Journal of Portfolio Management, 49(1), 84–101. https://doi.org/10.3905/jpm.2023.1.245
Ariya, K., Chanaim, S., & Dawod, A. Y. (2023). Correlation Between Capital Markets and Cryptocurrency: Impact of the Coronavirus. International Journal of Electrical and Computer Engineering (Ijece), 13(6), 6637. https://doi.org/10.11591/ijece.v13i6.pp6637-6645 DOI: https://doi.org/10.11591/ijece.v13i6.pp6637-6645
Aziz, N. S. A., Vrontos, S. D., & Hasim, H. M. (2019). Evaluation of Multivariate GARCH Models in an Optimal Asset Allocation Framework. The North American Journal of Economics and Finance, 47, 568–596. https://doi.org/10.1016/j.najef.2018.06.012 DOI: https://doi.org/10.1016/j.najef.2018.06.012
Bahloul, S., Mroua, M., & Naifar, N. (2021). Are Islamic Indexes, Bitcoin and Gold, Still “Safe-Haven” Assets During the COVID-19 Pandemic Crisis? International Journal of Islamic and Middle Eastern Finance and Management, 15(2), 372–385. https://doi.org/10.1108/imefm-06-2020-0295 DOI: https://doi.org/10.1108/IMEFM-06-2020-0295
Beatriz Vaz de Melo Mendes, & Carneiro, A. F. (2020). A Comprehensive Statistical Analysis of the Six Major Crypto-Currencies From August 2015 Through June 2020. Journal of Risk and Financial Management, 13(9), 192. https://doi.org/10.3390/jrfm13090192 DOI: https://doi.org/10.3390/jrfm13090192
Bhuvaneskumar, A., & Jayaraman, S. V. (2023). Do Cryptocurrencies Integrate With the Indices of Equity, Sustainability, Clean Energy, and Crude Oil? A Wavelet Coherency Approach. International Journal of Finance & Economics, 29(3), 3372–3392. https://doi.org/10.1002/ijfe.2843 DOI: https://doi.org/10.1002/ijfe.2843
Brière, M., Oosterlinck, K., & Szafarz, A. (2015). Virtual Currency, Tangible Return: Portfolio Diversification With Bitcoin. Journal of Asset Management, 16(6), 365–373. https://doi.org/10.1057/jam.2015.5 DOI: https://doi.org/10.1057/jam.2015.5
Bruhn, P., & Ernst, D. (2022). Assessing the Risk Characteristics of the Cryptocurrency Market: A GARCH-EVT-Copula Approach. Journal of Risk and Financial Management, 15(8), 346. https://doi.org/10.3390/jrfm15080346 DOI: https://doi.org/10.3390/jrfm15080346
Chen, K., & Chang, S. (2022). Volatility Co-Movement Between Bitcoin and Stablecoins: BEKK–GARCH and Copula–DCC–GARCH Approaches. Axioms, 11(6), 259. https://doi.org/10.3390/axioms11060259 DOI: https://doi.org/10.3390/axioms11060259
Chen, Q., Wang, D., & Pan, M. (2015). Multivariate Time-VaryingG-HCopula GARCH Model and Its Application in the Financial Market Risk Measurement. Mathematical Problems in Engineering, 2015, 1–9. https://doi.org/10.1155/2015/286014 DOI: https://doi.org/10.1155/2015/286014
Chen, T., & So, L. (2020). Discussion on the Effectiveness of the Copula-Garch Method to Detect Risk of a Portfolio Containing Bitcoin. Journal of Mathematical Finance, 10(04), 499–512. https://doi.org/10.4236/jmf.2020.104030 DOI: https://doi.org/10.4236/jmf.2020.104030
Cheng, J. (2023). Modelling and Forecasting Risk Dependence and Portfolio VaR for Cryptocurrencies. Empirical Economics, 65(2), 899–924. https://doi.org/10.1007/s00181-023-02360-7 DOI: https://doi.org/10.1007/s00181-023-02360-7
Colombo, A., Sadler, R., Llovera, G., Singh, V., Roth, S., Heindl, S., Monasor, L. S., Verhoeven, A., Peters, F., Parhizkar, S., Kamp, F., Agüero, M. G. d., Macpherson, A. J., Winkler, E., Herms, J., Benakis, C., Dichgans, M., Steiner, H., Giera, M., … Liesz, A. (2021). Microbiota-Derived Short Chain Fatty Acids Modulate Microglia and Promote Aβ Plaque Deposition. Elife, 10. https://doi.org/10.7554/elife.59826 DOI: https://doi.org/10.7554/eLife.59826
Conlon, T., Corbet, S., & McGee, R. (2020). Are Cryptocurrencies a Safe Haven for Equity Markets? An International Perspective From the COVID-19 Pandemic. Research in International Business and Finance, 54, 101248. https://doi.org/10.1016/j.ribaf.2020.101248 DOI: https://doi.org/10.1016/j.ribaf.2020.101248
Conlon, T., & McGee, R. (2020). Safe Haven or Risky Hazard? Bitcoin During the Covid-19 Bear Market. Finance Research Letters, 35, 101607. https://doi.org/10.1016/j.frl.2020.101607 DOI: https://doi.org/10.1016/j.frl.2020.101607
Delfabbro, P., King, D. L., & Williams, J. N. (2021). The Psychology of Cryptocurrency Trading: Risk and Protective Factors. Journal of Behavioral Addictions, 10(2), 201–207. https://doi.org/10.1556/2006.2021.00037 DOI: https://doi.org/10.1556/2006.2021.00037
Demiralay, S., & Bayracı, S. (2020). Should Stock Investors Include Cryptocurrencies in Their Portfolios After All? Evidence From a Conditional Diversification Benefits Measure. International Journal of Finance & Economics, 26(4), 6188–6204. https://doi.org/10.1002/ijfe.2116 DOI: https://doi.org/10.1002/ijfe.2116
Echaust, K., & Just, M. (2020). Implied Correlation Index: An Application to Economic Sectors of Commodity Futures and Stock Markets. Engineering Economics, 31(1), 4–17. https://doi.org/10.5755/j01.ee.31.1.22247 DOI: https://doi.org/10.5755/j01.ee.31.1.22247
Fantazzini, D. (2024). Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis With Four Thousand Crypto-Assets. Journal of Risk and Financial Management, 17(6), 248. https://doi.org/10.3390/jrfm17060248 DOI: https://doi.org/10.3390/jrfm17060248
Friesenecker, M., & Kazepov, Y. (2021). Housing Vienna: The Socio-Spatial Effects of Inclusionary and Exclusionary Mechanisms of Housing Provision. Social Inclusion, 9(2), 77–90. https://doi.org/10.17645/si.v9i2.3837 DOI: https://doi.org/10.17645/si.v9i2.3837
Ghorbel, A., & Jeribi, A. (2021). Investigating the Relationship Between Volatilities of Cryptocurrencies and Other Financial Assets. Decisions in Economics and Finance, 44(2), 817–843. https://doi.org/10.1007/s10203-020-00312-9 DOI: https://doi.org/10.1007/s10203-020-00312-9
Gil-Alaña, L. A., Abakah, E. J. A., & Rojo, M. F. R. (2020). Cryptocurrencies and Stock Market Indices. Are They Related? Research in International Business and Finance, 51, 101063. https://doi.org/10.1016/j.ribaf.2019.101063 DOI: https://doi.org/10.1016/j.ribaf.2019.101063
Gobbi, F. (2024). Comparative Analysis of Financial Market Volatility and Correlation Risk During the Great Recession and the COVID-19 Pandemic. Jaes, 19(16), 109. https://doi.org/10.57017/jaes.v19.2(84).02 DOI: https://doi.org/10.57017/jaes.v19.2(84).02
Hardiyanti, S. E. (2024). Risk and Return Analysis on Cryptocurrency Investment. Jurnal Ekonomi Lldikti Wilayah 1 (Juket), 4(2), 55–58. https://doi.org/10.54076/juket.v4i2.515 DOI: https://doi.org/10.54076/juket.v4i2.515
Hyun, S., Lee, J., Kim, J., & Jun, C. (2019). What Coins Lead in the Cryptocurrency Market: Using Copula and Neural Networks Models. Journal of Risk and Financial Management, 12(3), 132. https://doi.org/10.3390/jrfm12030132 DOI: https://doi.org/10.3390/jrfm12030132
Jeleskovic, V., Latini, C., Younas, Z. I., & Al‐Faryan, M. A. S. (2024). Cryptocurrency Portfolio Optimization: Utilizing a GARCH‐copula Model Within the Markowitz Framework. Journal of Corporate Accounting & Finance, 35(4), 139–155. https://doi.org/10.1002/jcaf.22721 DOI: https://doi.org/10.1002/jcaf.22721
Karaömer, Y. (2022). The Time-Varying Correlation Between Cryptocurrency Policy Uncertainty and Cryptocurrency Returns. Studies in Economics and Finance, 39(2), 297–310. https://doi.org/10.1108/sef-10-2021-0436 DOI: https://doi.org/10.1108/SEF-10-2021-0436
Kayani, U. N., & Hasan, F. (2024). Unveiling Cryptocurrency Impact on Financial Markets and Traditional Banking Systems: Lessons for Sustainable Blockchain and Interdisciplinary Collaborations. Journal of Risk and Financial Management, 17(2), 58. https://doi.org/10.3390/jrfm17020058 DOI: https://doi.org/10.3390/jrfm17020058
Kim, J., Kim, S., & Kim, S. (2020). On the Relationship of Cryptocurrency Price With US Stock and Gold Price Using Copula Models. Mathematics, 8(11), 1859. https://doi.org/10.3390/math8111859 DOI: https://doi.org/10.3390/math8111859
Letho, L., Chelwa, G., & Alhassan, A. L. (2022). Cryptocurrencies and Portfolio Diversification in an Emerging Market. China Finance Review International, 12(1), 20–50. https://doi.org/10.1108/cfri-06-2021-0123 DOI: https://doi.org/10.1108/CFRI-06-2021-0123
Liu, X., & Luger, R. (2015). Unfolded GARCH Models. Journal of Economic Dynamics and Control, 58, 186–217. https://doi.org/10.1016/j.jedc.2015.06.007 DOI: https://doi.org/10.1016/j.jedc.2015.06.007
Majumder, S. B. (2024). Is Cryptocurrency a New Digital Gold? Evidence From the Macroeconomic Shocks In selected Emerging Economies. Journal of Economic Studies, 52(1), 88–103. https://doi.org/10.1108/jes-08-2023-0410 DOI: https://doi.org/10.1108/JES-08-2023-0410
Martin, V. (2023). Financial Stability Implications From the Crypto-Asset Market. Bankarstvo, 52(2–3), 65–96. https://doi.org/10.5937/bankarstvo2302065m DOI: https://doi.org/10.5937/bankarstvo2302065M
Mendes, I. F., Completo, S., Carvalho, R., Jacinto, S., Schäfer, S., Correia, P., Brito, M. J., & Figueiredo, A. (2023). Salmonellosis in Children at a Portuguese Hospital: A Retrospective Study. Acta Médica Portuguesa. https://doi.org/10.20344/amp.18906 DOI: https://doi.org/10.20344/amp.18906
Nadeem, M. A., Shahzad, A., & Anwar, Y. (2024). Impact of Crypto Assets as Risk Diversifiers: A VAR-based Analysis of Portfolio Risk Reduction. Bbe, 13(1). https://doi.org/10.61506/01.00173 DOI: https://doi.org/10.61506/01.00173
Nugraha, W. S., & Soekarno, S. (2023). Optimal Portfolio Construction Using Bitcoin, Gold, LQ45 Index, and Indonesia Bond Index. International Journal of Current Science Research and Review, 06(08). https://doi.org/10.47191/ijcsrr/v6-i8-17 DOI: https://doi.org/10.47191/ijcsrr/V6-i8-17
Palit, B., & Mukherjee, S. (2022). Can Cryptocurrency Tap the Indian Market? Role of Having Robust Monetary and Fiscal Policies. International Journal of Science Engineering and Management, 9(3), 17–24. https://doi.org/10.36647/ijsem/09.03.a004 DOI: https://doi.org/10.36647/IJSEM/09.03.A004
Platanakis, E., & Urquhart, A. (2020). Should Investors Include Bitcoin in Their Portfolios? A portfolio Theory Approach. The British Accounting Review, 52(4), 100837. https://doi.org/10.1016/j.bar.2019.100837 DOI: https://doi.org/10.1016/j.bar.2019.100837
Rao, Q., Zhang, Z., Lv, Y., Zhao, Y., Bai, L., & Hou, X. (2020). Factors Associated With Influential Health-Promoting Messages on Social Media: Content Analysis of Sina Weibo. Jmir Medical Informatics, 8(10), e20558. https://doi.org/10.2196/20558 DOI: https://doi.org/10.2196/20558
Rehman, M. U., Asghar, N., & Kang, S. H. (2020). Do Islamic Indices Provide Diversification to Bitcoin? A Time-Varying Copulas and Value at Risk Application. Pacific-Basin Finance Journal, 61, 101326. https://doi.org/10.1016/j.pacfin.2020.101326 DOI: https://doi.org/10.1016/j.pacfin.2020.101326
Shahrour, M. H., Lemand, R., & Mourey, M. (2024). Cross-Market Volatility Dynamics in Crypto and Traditional Financial Instruments: Quantifying the Spillover Effect. The Journal of Risk Finance, 26(1), 1–21. https://doi.org/10.1108/jrf-07-2024-0185 DOI: https://doi.org/10.1108/JRF-07-2024-0185
Shrotryia, V. K., & Kalra, H. (2021). Herding in the Crypto Market: A Diagnosis of Heavy Distribution Tails. Review of Behavioral Finance, 14(5), 566–587. https://doi.org/10.1108/rbf-02-2021-0021 DOI: https://doi.org/10.1108/RBF-02-2021-0021
Stawicki, S. P. (2024). Novel Cryptocurrency Investment Approaches: Risk Reduction and Diversification Through Index Based Strategies. https://doi.org/10.5772/intechopen.1004097 DOI: https://doi.org/10.5772/intechopen.1004097
Syuhada, K., & Hakim, A. R. (2020). Modeling Risk Dependence and Portfolio VaR Forecast Through Vine Copula for Cryptocurrencies. Plos One, 15(12), e0242102. https://doi.org/10.1371/journal.pone.0242102 DOI: https://doi.org/10.1371/journal.pone.0242102
Trabelsi, N. (2018). Are There Any Volatility Spill-Over Effects Among Cryptocurrencies and Widely Traded Asset Classes? Journal of Risk and Financial Management, 11(4), 66. https://doi.org/10.3390/jrfm11040066 DOI: https://doi.org/10.3390/jrfm11040066
Zeng, H. (2024). Risk Transmission and Diversification Strategies Between US Real Estate Investment Trusts (REITs) and Green Finance Indices. Kybernetes. https://doi.org/10.1108/k-12-2023-2653 DOI: https://doi.org/10.1108/K-12-2023-2653
Zeng, X., Li, Z., Yang, W., & Huang, Z.-Y. (2021). The Risk Interdependence of Cryptocurrencies: Before and During the COVID-19 Pandemic. International Journal of Financial Engineering, 09(04). https://doi.org/10.1142/s2424786321500444 DOI: https://doi.org/10.1142/S2424786321500444
Zhao, H., & Zhang, L. (2021). Financial Literacy or Investment Experience: Which Is More Influential in Cryptocurrency Investment? The International Journal of Bank Marketing, 39(7), 1208–1226. https://doi.org/10.1108/ijbm-11-2020-0552 DOI: https://doi.org/10.1108/IJBM-11-2020-0552
Zhou, Z. (2022). Dynamic Connectedness Between Cryptocurrencies, Gold, U.S. Dollar Index, and Oil During COVID-19. https://doi.org/10.2991/aebmr.k.220307.124 DOI: https://doi.org/10.2991/aebmr.k.220307.124



