Balancing Innovation and Ethics: A Narrative Review of Artificial Intelligence in Healthcare
DOI:
https://doi.org/10.61978/medicor.v2i4.1079Keywords:
Artificial Intelligence in Healthcare, Ethical Considerations, Data Privacy in Health Systems, Algorithmic Bias in Medical AI, Explainable AI in Healthcare, Governance and Accountability in AI, Global Health EquityAbstract
Artificial intelligence (AI) is increasingly applied in healthcare, improving diagnostic accuracy, personalized treatment, and data management. However, its adoption raises ethical challenges related to patient privacy, algorithmic bias, clinical autonomy, and governance. This narrative review synthesizes peer-reviewed studies (2020–2025) identified through Scopus, PubMed, Google Scholar, and Web of Science. Findings indicate persistent risks of data breaches, algorithmic inequities, and loss of clinical autonomy. While techniques such as differential privacy and explainable AI offer solutions, their implementation remains uneven. Effective governance requires multi-stakeholder engagement and strong regulation. We conclude that responsible AI integration depends on transparent governance and inclusive model development to ensure equitable and trustworthy healthcare outcomes.
References
Amann, J., Blasimme, A., Vayena, E., Frey, D., & Madai, V. (2020). Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20(1). https://doi.org/10.1186/s12911-020-01332-6 DOI: https://doi.org/10.1186/s12911-020-01332-6
Amini, M., Jesus, M., Sheikholeslami, D., Alves, P., Benam, A., & Hariri, F. (2023). Artificial intelligence ethics and challenges in healthcare applications: a comprehensive review in the context of the european gdpr mandate. Machine Learning and Knowledge Extraction, 5(3), 1023-1035. https://doi.org/10.3390/make5030053 DOI: https://doi.org/10.3390/make5030053
Badawy, W., Zinhom, H., & Shaban, M. (2024). Navigating ethical considerations in the use of artificial intelligence for patient care: a systematic review. International Nursing Review, 72(3). https://doi.org/10.1111/inr.13059 DOI: https://doi.org/10.1111/inr.13059
Bandekar, N., Chaudhari, R., Yadav, Y., Figueiredo, D., & Chunkhare, M. (2024). The role of ai in emr (electronic medical record) and patient privacy enhancement., 301-320. https://doi.org/10.4018/979-8-3693-1243-8.ch016 DOI: https://doi.org/10.4018/979-8-3693-1243-8.ch016
Das, B., & Khatua, D. (2024). Ethical considerations for implementing ai-based solutions in digital health and medical analytics., 241-266. https://doi.org/10.4018/979-8-3693-6294-5.ch010 DOI: https://doi.org/10.4018/979-8-3693-6294-5.ch010
Endo, P. (2025). Artificial intelligence for women and child healthcare: is ai able to change the beginning of a new story? a perspective. Health Science Reports, 8(5). https://doi.org/10.1002/hsr2.70779 DOI: https://doi.org/10.1002/hsr2.70779
García-Saisó, S., Martí, M., Pesce, K., Luciani, S., Mújica, Ó., Hennis, A., … & D’Agostino, M. (2024). Artificial intelligence as a potential catalyst to a more equitable cancer care. JMIR Cancer, 10, e57276. https://doi.org/10.2196/57276 DOI: https://doi.org/10.2196/57276
Giansanti, D., & Pirrera, A. (2025). Integrating ai and assistive technologies in healthcare: insights from a narrative review of reviews. Healthcare, 13(5), 556. https://doi.org/10.3390/healthcare13050556 DOI: https://doi.org/10.3390/healthcare13050556
Graaf, Y. (2025). Societal factors influencing the implementation of ai-driven technologies in (smart) hospitals. PLOS ONE, 20(6), e0325718. https://doi.org/10.1371/journal.pone.0325718 DOI: https://doi.org/10.1371/journal.pone.0325718
Graña‐Castro, O., Izquierdo, E., Mesa, A., Menasalvas, E., & Chivato-Pérez, T. (2024). Assessing the impact of new technologies on managing chronic respiratory diseases. Journal of Clinical Medicine, 13(22), 6913. https://doi.org/10.3390/jcm13226913 DOI: https://doi.org/10.3390/jcm13226913
Holohan, M., & Fiske, A. (2021). “Like I’m talking to a real person”: exploring the meaning of transference for the use and design of ai-based applications in psychotherapy. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.720476 DOI: https://doi.org/10.3389/fpsyg.2021.720476
Jaime, F., Muñoz, A., Rodríguez-Gómez, F., & Jeréz-Calero, A. (2023). Strengthening privacy and data security in biomedical microelectromechanical systems by iot communication security and protection in smart healthcare. Sensors, 23(21), 8944. https://doi.org/10.3390/s23218944 DOI: https://doi.org/10.3390/s23218944
Jones, R. (2025). Algorithmic bias and fairness in biomedical and health research., 287-324. https://doi.org/10.4018/979-8-3373-4252-8.ch008 DOI: https://doi.org/10.4018/979-8-3373-4252-8.ch008
Karra, M., & RamaRao, S. (2025). Big data and ai in sexual and reproductive health: a comment. Studies in Family Planning, 56(2), 317-331. https://doi.org/10.1111/sifp.70005 DOI: https://doi.org/10.1111/sifp.70005
Lock, C., Tan, N., Long, I., & Keong, N. (2024). Neuroimaging data repositories and ai-driven healthcare—global aspirations vs. ethical considerations in machine learning models of neurological disease. Frontiers in Artificial Intelligence, 6. https://doi.org/10.3389/frai.2023.1286266 DOI: https://doi.org/10.3389/frai.2023.1286266
McGrath, C., Chau, C., & Molina, G. (2025). Monitoring oral health remotely: ethical considerations when using ai among vulnerable populations. Frontiers in Oral Health, 6. https://doi.org/10.3389/froh.2025.1587630 DOI: https://doi.org/10.3389/froh.2025.1587630
Mennella, C., Maniscalco, U., Pietro, G., & Esposito, M. (2024). Ethical and regulatory challenges of ai technologies in healthcare: a narrative review. Heliyon, 10(4), e26297. https://doi.org/10.1016/j.heliyon.2024.e26297 DOI: https://doi.org/10.1016/j.heliyon.2024.e26297
Mooghal, M., Nasir, S., Arif, A., Khan, W., Rashid, Y., & Vohra, L. (2024). Innovations in artificial intelligence-driven breast cancer survival prediction: a narrative review. Cancer Informatics, 23. https://doi.org/10.1177/11769351241272389 DOI: https://doi.org/10.1177/11769351241272389
Mushtaq, S., & Hameeda, Q. (2025). Empowering public health: ai‐powered security solutions for ai‐driven challenges. Applied AI Letters, 6(2). https://doi.org/10.1002/ail2.119 DOI: https://doi.org/10.1002/ail2.119
Onetiu, F., Bratu, M., Folescu, R., Bratosin, F., & Bratu, T. (2025). Assessing medical students’ perceptions of ai-integrated telemedicine: a cross-sectional study in Romania. Healthcare, 13(9), 990. https://doi.org/10.3390/healthcare13090990 DOI: https://doi.org/10.3390/healthcare13090990
Papageorgiou, P. (2025). Artificial intelligence in primary malignant bone tumor imaging: a narrative review. Diagnostics, 15(13), 1714. https://doi.org/10.3390/diagnostics15131714 DOI: https://doi.org/10.3390/diagnostics15131714
Pavunraj, D., Kumar, A., & Anbumaheshwari, K. (2025). AI in personalized treatment planning., 117-142. https://doi.org/10.4018/979-8-3373-1275-0.ch006 DOI: https://doi.org/10.4018/979-8-3373-1275-0.ch006
Pawelczyk, J., Kraus, M., Voigtlaender, S., Siebenlist, S., & Rupp, M. (2025). Advancing musculoskeletal care using ai and digital health applications: a review of commercial solutions. HSS Journal®, 21(3), 331-341. https://doi.org/10.1177/15563316251341321 DOI: https://doi.org/10.1177/15563316251341321
Perez, K., Wisniewski, D., Ari, A., Lee, K., Lieneck, C., & Ramamonjiarivelo, Z. (2025). Investigation into application of ai and telemedicine in rural communities: a systematic literature review. Healthcare, 13(3), 324. https://doi.org/10.3390/healthcare13030324 DOI: https://doi.org/10.3390/healthcare13030324
Pham, T. (2025). Ethical and legal considerations in healthcare ai: innovation and policy for safe and fair use. Royal Society Open Science, 12(5). https://doi.org/10.1098/rsos.241873 DOI: https://doi.org/10.1098/rsos.241873
Rad, A., Vardanyan, R., Athanasiou, T., Maessen, J., & Nia, P. (2025). The ethical considerations of integrating artificial intelligence into surgery: a review. Interdisciplinary Cardiovascular and Thoracic Surgery, 40(3). https://doi.org/10.1093/icvts/ivae192 DOI: https://doi.org/10.1093/icvts/ivae192
Radanliev, P. (2025). Privacy, ethics, transparency, and accountability in ai systems for wearable devices. Frontiers in Digital Health, 7. https://doi.org/10.3389/fdgth.2025.1431246 DOI: https://doi.org/10.3389/fdgth.2025.1431246
Rony, M., Ahmad, S., Das, D., Tanha, S., Deb, T., Akter, M., … & Akter, F. (2025). Nursing students' perspectives on integrating artificial intelligence into clinical practice and training: a qualitative descriptive study. Health Science Reports, 8(4). https://doi.org/10.1002/hsr2.70728 DOI: https://doi.org/10.1002/hsr2.70728
Shah, S. (2024). The impact of artificial intelligence on health outcomes: a review. PJS, 1. https://doi.org/10.70389/pjs.100006 DOI: https://doi.org/10.70389/PJS.100006
Sargsyan, A., Hovsepyan, S., & Muradyan, A. (2024). Ubiquitous and powerful artificial intelligence (AI)., 255-271. https://doi.org/10.1007/978-3-031-62332-5_26 DOI: https://doi.org/10.1007/978-3-031-62332-5_26
Varnosfaderani, S., & Forouzanfar, M. (2024). The role of ai in hospitals and clinics: transforming healthcare in the 21st century. Bioengineering, 11(4), 337. https://doi.org/10.3390/bioengineering11040337 DOI: https://doi.org/10.3390/bioengineering11040337
Vozna, A., & Costantini, S. (2025). Ethical, legal, and societal dimensions of ai-driven social robots in elderly healthcare. Intelligenza Artificiale. https://doi.org/10.1177/17248035241310192 DOI: https://doi.org/10.1177/17248035241310192
Weerasinghe, K. (2025). The impact of ai-driven chatbot assistance on protocol development and clinical research engagement: an implementation report. Journal of Personalized Medicine, 15(7), 269. https://doi.org/10.3390/jpm15070269 DOI: https://doi.org/10.3390/jpm15070269



