Effectiveness of Truck Time Restrictions in West Java Industrial Corridor

Authors

  • Inda Tri Pasa Politeknik Penerbangan Palembang
  • Hadi Prayitno Politeknik Penerbangan Surabaya
  • Asep Gunawan Slamet Bangun Skills
  • Endang Wahyuni Institut Transportasi dan Logistik Trisakti

DOI:

https://doi.org/10.61978/logistica.v2i4.686

Keywords:

Truck Operational Restriction, Freight Logistics, Congestion Management, Traffic Safety, Digital Adaptation, Transport Policy

Abstract

This study investigates the impact of truck operational time restrictions on traffic safety and congestion in West Java’s industrial corridors. As freight traffic intensifies across key logistic routes such as Cikarang–Karawang, policymakers introduced peak-hour bans on heavy-duty vehicles to alleviate congestion and enhance road safety. Employing a qualitative-descriptive approach, the study collected data through in-depth interviews, field observations, and official reports. Results reveal a dual impact: while congestion and accident rates declined during restricted hours, the policy induced new challenges, including secondary congestion near access points, increased fatigue among night-driving truckers, and unequal compliance among logistics stakeholders. Larger logistics companies successfully adapted by integrating digital scheduling and real-time monitoring, while SMEs encountered structural barriers in policy adaptation due to limited access to technology and information. Inconsistent enforcement and lack of policy awareness also hampered regulatory effectiveness. The discussion emphasizes the need for a balanced approach one that combines regulatory intervention with affirmative support for small-scale actors, and investments in smart enforcement technologies. The findings offer valuable insights for developing inclusive, context-sensitive transport policies in industrially dynamic regions

References

Aung, N., Zhang, W., Dhelim, S., & Ai, Y. (2020). T-Coin: Dynamic Traffic Congestion Pricing System for the Internet of Vehicles in Smart Cities. Information, 11(3), 149. https://doi.org/10.3390/info11030149 DOI: https://doi.org/10.3390/info11030149

Badan Pusat Statistik. (2023). Profil Kemiskinan di Indonesia Tahun 2023. BPS RI.

Belhassine, K., Renaud, J., Coelho, L. d. S., & Turgeon, V. (2022). Signal Priority for Improving Fluidity and Decreasing Fuel Consumption. Sumo Conference Proceedings, 3, 159–169. https://doi.org/10.52825/scp.v3i.158 DOI: https://doi.org/10.52825/scp.v3i.158

Beojone, C. V., & Geroliminis, N. (2020). On the Inefficiency of Ride-Sourcing Services Towards Urban Congestion. https://doi.org/10.48550/arxiv.2007.00980 DOI: https://doi.org/10.1016/j.trc.2020.102890

Budihardjo, M. A., Fadhilah, I., Humaira, N. G., Hadiwidodo, M., Wardhana, I. W., & Ramadan, B. S. (2021). Forecasting Greenhouse Gas Emissions From Heavy Vehicles: A Case Study of Semarang City. Jurnal Presipitasi Media Komunikasi Dan Pengembangan Teknik Lingkungan, 18(2), 254–260. https://doi.org/10.14710/presipitasi.v18i2.254-260 DOI: https://doi.org/10.14710/presipitasi.v18i2.254-260

Castillo, J. C., López, J. C., Escobar, A., Ríos, D. D. L., Quirama, L. F., & Tibaquirá, J. E. (2022). Natural Gas, a Mean to Reduce Emissions and Energy Consumption of HDV? A Case Study of Colombia Based on Vehicle Technology Criteria. Energies, 15(3), 998. https://doi.org/10.3390/en15030998 DOI: https://doi.org/10.3390/en15030998

Çolak, S., Lima, A., & González, M. C. (2016). Understanding Congested Travel in Urban Areas. Nature Communications, 7(1). https://doi.org/10.1038/ncomms10793 DOI: https://doi.org/10.1038/ncomms10793

Dikshit, S., Atiq, A., Shahid, M., Dwivedi, V., & Thusu, A. (2023). The Use of Artificial Intelligence to Optimize the Routing of Vehicles and Reduce Traffic Congestion in Urban Areas. Eai Endorsed Transactions on Energy Web, 10. https://doi.org/10.4108/ew.4613 DOI: https://doi.org/10.4108/ew.4613

Hall, C. M. (2021). The Impact of Hybridization, Engine Combustion Method, and Energy Management System Connectivity on Heavy-Duty Vehicle Operation. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 235(8), 2265–2280. https://doi.org/10.1177/0954407020983048 DOI: https://doi.org/10.1177/0954407020983048

Johansson, M., Contet, A., Erlandsson, O., Holmbom, R., Höckerdal, E., Jonsson, O. L., Jung, D., & Eriksson, L. (2024). The Electrochemical Commercial Vehicle (ECCV) Platform. Energies, 17(7), 1742. https://doi.org/10.3390/en17071742 DOI: https://doi.org/10.3390/en17071742

Kementerian Perhubungan Republik Indonesia. (2023). Laporan Evaluasi Pembatasan Waktu Operasional Kendaraan Barang di Wilayah Jabodetabek dan Jawa Barat. Direktorat Jenderal Perhubungan Darat.

Lai, S., Xu, H., Luo, Y., Zou, F., Hu, Z., & Zhong, H. (2024). Expressway Vehicle Arrival Time Estimation Algorithm Based on Electronic Toll Collection Data. Sustainability, 16(13), 5581. https://doi.org/10.3390/su16135581 DOI: https://doi.org/10.3390/su16135581

Marazi, N. F., Majumdar, B. B., & Sahu, P. K. (2024). Examining Congestion Pricing Scheme Effectiveness Using the Travel Time Congestion Index. Transportation Research Record Journal of the Transportation Research Board, 2678(11), 474–488. https://doi.org/10.1177/03611981241242061 DOI: https://doi.org/10.1177/03611981241242061

Menelaou, C., Timotheou, S., Kolios, P., & Panayiotou, C. G. (2019). Joint Route Guidance and Demand Management for Multi-Region Traffic Networks. 2183–2188. https://doi.org/10.23919/ecc.2019.8795819 DOI: https://doi.org/10.23919/ECC.2019.8795819

Nkosi, N., Burger, R., Pauw, C., Ayob, N., & Piketh, S. (2023). The Impact of Vehicle Parameters on Road PM10 Vehicle Resuspended Emissions: A Case in South African Low-Income Settlement. Clean Air Journal, 33(2). https://doi.org/10.17159/caj/2023/33/2.15497 DOI: https://doi.org/10.17159/caj/2023/33/2.15497

Nugroho, H. (2020). Analisis dampak pembatasan operasional kendaraan berat terhadap kemacetan lalu lintas di kawasan industri. Jurnal Transportasi Dan Logistik, 12(2), 145–158. https://doi.org/10.24843/JTL.2020.v12.i02.p03

Pirra, M., & Diana, M. (2019). Integrating Mobility Data Sources to Define and Quantify a Vehicle-Level Congestion Indicator: An Application for the City of Turin. European Transport Research Review, 11(1). https://doi.org/10.1186/s12544-019-0378-0 DOI: https://doi.org/10.1186/s12544-019-0378-0

Premnath, M., & Murugan, G. S. (2021). Experimental Investigation on the Emission Reduction Potential of Metal Oxide-Coated Ceramic Foam Filters as Substrates for Diesel Engines. International Journal of Advanced Technology and Engineering Exploration, 8(81), 1033–1048. https://doi.org/10.19101/ijatee.2021.874166 DOI: https://doi.org/10.19101/IJATEE.2021.874166

Qiu, Y., Dobbelaere, C., & Song, S. (2023). Energy Cost Analysis and Operational Range Prediction Based on Medium- And Heavy-Duty Electric Vehicle Real-World Deployments Across the United States. World Electric Vehicle Journal, 14(12), 330. https://doi.org/10.3390/wevj14120330 DOI: https://doi.org/10.3390/wevj14120330

Quessada, M. S., Pereira, R., Revejes, W., Sartori, B. M., Gottsfritz, E. N., Lieira, D. D., Marco A. C. da Silva, Filho, G. P. R., & Meneguette, R. I. (2020). ITSMEI: An Intelligent Transport System for Monitoring Traffic and Event Information. International Journal of Distributed Sensor Networks, 16(10), 155014772096375. https://doi.org/10.1177/1550147720963751 DOI: https://doi.org/10.1177/1550147720963751

Rajendran, S., & Srinivas, S. (2020). Air Taxi Service for Urban Mobility: A Critical Review of Recent Developments, Future Challenges, and Opportunities. Transportation Research Part E Logistics and Transportation Review, 143, 102090. https://doi.org/10.1016/j.tre.2020.102090 DOI: https://doi.org/10.1016/j.tre.2020.102090

Schwimmer, E., Gómez-Ibáñez, J. A., & Casady, C. B. (2019). Toll-Managed Lane Pioneers: Lessons From Five US States. Case Studies on Transport Policy, 7(3), 655–666. https://doi.org/10.1016/j.cstp.2019.05.001 DOI: https://doi.org/10.1016/j.cstp.2019.05.001

Setiawan, I. C., & Setiyo, M. (2024). Fueling the Future: The Case for Heavy-Duty Fuel Cell Electric Vehicles in Sustainable Transportation. Automotive Experiences, 7(1), 1–5. https://doi.org/10.31603/ae.11285 DOI: https://doi.org/10.31603/ae.11285

Song, S., Qiu, Y., Coates, R. L., Dobbelaere, C., & Seles, P. (2024). Depot Charging Schedule Optimization for Medium- And Heavy-Duty Battery-Electric Trucks. World Electric Vehicle Journal, 15(8), 379. https://doi.org/10.3390/wevj15080379 DOI: https://doi.org/10.3390/wevj15080379

Talebpour, A., Mahmassani, H. S., & Elfar, A. (2017). Investigating the Effects of Reserved Lanes for Autonomous Vehicles on Congestion and Travel Time Reliability. Transportation Research Record Journal of the Transportation Research Board, 2622(1), 1–12. https://doi.org/10.3141/2622-01 DOI: https://doi.org/10.3141/2622-01

Zhao, H., Wang, D., Zhang, Z., Xian, J., & Bai, X. (2022). Effect of Gut Microbiota-Derived Metabolites on Immune Checkpoint Inhibitor Therapy: Enemy or Friend? Molecules, 27(15), 4799. https://doi.org/10.3390/molecules27154799 DOI: https://doi.org/10.3390/molecules27154799

Zhou, R., Chen, H., & Chen, H. (2024). Optimal Reservation Volume of Urban Roads Based on Travel Reservation Strategy. Journal of Advanced Transportation, 2024(1). https://doi.org/10.1155/2024/6628446 DOI: https://doi.org/10.1155/2024/6628446

Zulkarnain, Z., & Ghiffary, A. (2021). Impact of Odd-Even Driving Restrictions on Air Quality in Jakarta. International Journal of Technology, 12(5), 925. https://doi.org/10.14716/ijtech.v12i5.5227 DOI: https://doi.org/10.14716/ijtech.v12i5.5227

Downloads

Published

2024-10-31

How to Cite

Pasa, I. T., Prayitno, H., Slamet, A. G., & Wahyuni, E. (2024). Effectiveness of Truck Time Restrictions in West Java Industrial Corridor. Logistica : Journal of Logistic and Transportation, 2(4), 214–224. https://doi.org/10.61978/logistica.v2i4.686