Integrative Analysis of Mitochondrial Dysfunction and Stress Signaling in Arabidopsis Roots Exposed to Salinity

Authors

  • Triana Nuryastuti Universitas Bumi Hijrah

Keywords:

Salt Stress, Mitochondria, Alternative Oxidase, Oxidative Phosphorylation, ROS, Arabidopsis Thaliana, Bioenergetics, UPRmt

Abstract

Salt stress poses a major limitation to plant growth, particularly affecting root energy metabolism and redox stability. This study investigates how mitochondrial bioenergetics in Arabidopsis root cells are reprogrammed in response to moderate and severe salt stress. Using high-resolution respirometry and transcriptomic profiling, we assessed mitochondrial performance under 0, 100, and 200 mM NaCl. Mitochondrial respiration was measured using the O2k Oroboros system, applying a substrate-uncoupler-inhibitor titration protocol. Key parameters included basal, OXPHOS, LEAK respiration, respiratory control ratio (RCR), ATP production, and maximal electron transport capacity. RNA-seq followed by qPCR validation was conducted to evaluate gene expression changes. Physiological markers such as ROS, proline, malondialdehyde (MDA), and K⁺/Na⁺ ratios were also quantified. Results showed a substantial decline in OXPHOS (up to 60%) and ATP production (up to 70%) under 200 mM NaCl, alongside a marked increase in LEAK respiration and ROS emission. RCR values dropped from 7.2 to 2.1, indicating impaired mitochondrial efficiency. AOX1a expression increased 8-fold, while Complex I genes were downregulated. Concurrently, proline levels rose 15-fold, and MDA and ROS levels confirmed oxidative stress. Transcriptomic data revealed activation of antioxidant pathways and UPRmt components. These findings reveal a coordinated mitochondrial adaptation under salt stress, shifting electron transport from canonical pathways toward AOX-mediated respiration to maintain redox balance. The integration of bioenergetic, molecular, and physiological data provides novel insights into the mechanisms underlying stress tolerance. Targeting AOX and mitochondrial stress responses may enhance resilience in crops facing increasing salinity.

References

Alscher, L., & Stabenau, E. K. (2022). The Effects of Pyrene on Complex I and Complex II‐mediated Respiration in Isolated Skeletal Muscle Mitochondria in the Leopard Frog, Rana Pipiens. The Faseb Journal, 36(S1). https://doi.org/10.1096/fasebj.2022.36.s1.r4176

Brew‐Appiah, R. A. T., York, Z. B., Krishnan, V., Roalson, E. H., & Sanguinet, K. (2018). Genome-Wide Identification and Analysis of the ALTERNATIVE OXIDASE Gene Family in Diploid and Hexaploid Wheat. Plos One, 13(8), 201439. https://doi.org/10.1371/journal.pone.0201439

Del‐Saz, N. F., Florez‐Sarasa, I., Clemente‐Moreno, M. J., Mhadhbi, H., Flexas, J., Fernie, A. R., & Ribas‐Carbó, M. (2016). Salinity Tolerance Is Related to Cyanide‐resistant Alternative Respiration in Medicago Truncatula Under Sudden Severe Stress. Plant Cell & Environment, 39(11), 2361–2369. https://doi.org/10.1111/pce.12776

Fuchs, J., Tesfamichael, M., Clube, R. K., & Tomei, J. (2023). Context Really Matters’—The Role of Energy System Modelling in Policymaking in Low- And Middle-Income Countries. https://doi.org/10.21203/rs.3.rs-3511182/v1

Gouspillou, G., Godin, R., Piquereau, J., Picard, M., Mofarrahi, M., Mathew, J., Purves-Smith, F. M., Sgarioto, N., Hepple, R. T., Burelle, Y., & Hussain, S. N. A. (2018). Protective Role of Parkin in Skeletal Muscle Contractile and Mitochondrial Function. The Journal of Physiology, 596(13), 2565–2579. https://doi.org/10.1113/jp275604

Hossain, M. S., & Dietz, K. (2016). Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis Under Salinity Stress. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00548

Li, Y., Li, S., Wu, J., Li, J., Chen, H., Jia, J., Hong, J., Guo, Q., Xiao, J., & Wei, J. (2026). Bioengineered apoptotic vesicles overcome energy crisis in bone regeneration through mitochondrial metabolic activation. Bioactive Materials, 56, 115–135. https://doi.org/10.1016/j.bioactmat.2025.10.004

Lima, E., Ferreira, O., Boto, R. E., Fernandes, J. R., Almeida, P., Silvestre, S. M., Santos, A. O., & Reis, L. V. (2026). Exploring the in vitro photodynamic properties of mitochondrial-targeting red- and near-infrared-absorbing γ-aminobutyric acid-modified squaraine dyes. Dyes and Pigments, 246. https://doi.org/10.1016/j.dyepig.2025.113384

Liu, J., Fu, C., Li, G., Khan, M. N., & Wu, H. (2021). ROS Homeostasis and Plant Salt Tolerance. Plant Nanobiotechnology Updates. Sustainability, 13(6), 3552. https://doi.org/10.3390/su13063552

Manbir, S., P., K., A., & Gupta, K. J. (2022). Alternative Oxidase Plays a Role in Minimizing ROS and RNS Produced Under Salinity Stress in Arabidopsis Thaliana. Physiologia Plantarum, 174(2). https://doi.org/10.1111/ppl.13649

Menale, C., Sozio, C., La Rosa, G., Trinchese, G., Yoon, N. A., Palmiero, A., Aiello, I., Raia, M., Scalia, G., Dentice, M., Mollica, M. P., & Diano, S. (2026). Glucose restriction regulates osteoblasts function by modulating mitochondrial activity and lipolysis. Journal of Nutritional Biochemistry, 148. https://doi.org/10.1016/j.jnutbio.2025.110158

Mesa‐Marín, J., Del‐Saz, N. F., Rodríguez‐Llorente, I. D., Redondo‐Gómez, S., Pajuelo, E., Ribas‐Carbó, M., & Mateos‐Naranjo, E. (2018). PGPR Reduce Root Respiration and Oxidative Stress Enhancing Spartina Maritima Root Growth and Heavy Metal Rhizoaccumulation. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.01500

Othman, M. H. C., Millar, A. H., & Taylor, N. L. (2017). Connecting Salt Stress Signalling Pathways With Salinity‐induced Changes in Mitochondrial Metabolic Processes InC3 Plants. Plant Cell & Environment, 40(12), 2875–2905. https://doi.org/10.1111/pce.13034

Pan, Z., Kong, L., Shi, F., Xie, H., Lin, G., Yao, J., Chen, Z., Wang, Y., Chen, G., & Zhu, Q. (2026). OCIAD2-IQGAP1 interaction promotes pancreatic cancer progression by suppressing oxidative stress and mitochondria-mediated apoptosis. Cellular Signalling, 138. https://doi.org/10.1016/j.cellsig.2025.112217

Piel, R. B., Obi, C. D., Viana, M. P., Willoughby, M. M., Martinez-Guzman, O., Wadley, A., Jami-Alahmadi, Y., Wohlschlegel, J. A., Hicks, K. G., Rutter, J., Maschek, J. A., Catrow, J. L., Cox, J., Reddi, A. R., Khalimonchuk, O., & Medlock, A. E. (2026). Progesterone receptor membrane component 1 (PGRMC1) regulates Heme trafficking through mitochondria-ER junctions. Journal of Inorganic Biochemistry, 275. https://doi.org/10.1016/j.jinorgbio.2025.113093

Sweetman, C., Miller, T. K., Booth, N. J., Shavrukov, Y., Jenkins, C. L. D., Soole, K. L., & Day, D. A. (2020). Identification of Alternative Mitochondrial Electron Transport Pathway Components in Chickpea Indicates a Differential Response to Salinity Stress Between Cultivars. International Journal of Molecular Sciences, 21(11), 3844. https://doi.org/10.3390/ijms21113844

Vishwakarma, A., Kumari, A., Mur, L. A. J., & Gupta, K. J. (2018). A Discrete Role for Alternative Oxidase Under Hypoxia to Increase Nitric Oxide and Drive Energy Production. Free Radical Biology and Medicine, 122, 40–51. https://doi.org/10.1016/j.freeradbiomed.2018.03.045

Wang, L., Song, W., Li, F., Shuang, S., Song, S., Yang, Y., Huang, Y., & Wang, K. (2026). Mitochondria-immobilized fluorescent probes for viscosity and cellular imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 346. https://doi.org/10.1016/j.saa.2025.126847

Wanniarachchi, V., Dametto, L., Sweetman, C., Shavrukov, Y., Day, D. A., Jenkins, C. L. D., & Soole, K. L. (2018). Alternative Respiratory Pathway Component Genes (AOX and ND) in Rice and Barley and Their Response to Stress. International Journal of Molecular Sciences, 19(3), 915. https://doi.org/10.3390/ijms19030915

Wibom, R., Alsina, D., Naess, K., Engvall, M., Freyer, C., Wedell, A., & Wredenberg, A. (2026). Advancing a sensitive method for measuring mitochondrial ATP production in small muscle biopsy samples. Analytical Biochemistry, 709. https://doi.org/10.1016/j.ab.2025.116004

Xu, F., Ye, P., He, Z., & Yu, L. (2023). The Role of Cyanoalanine Synthase and Alternative Oxidase in Promoting Salt Stress Tolerance in Arabidopsis Thaliana. BMC Plant Biology, 23(1). https://doi.org/10.1186/s12870-023-04167-1

Yu, L., Liu, Y., Liu, C., Zhu, F., He, Z., & Xu, F. (2020). Overexpressed Β‐cyanoalanine Synthase Functions With Alternative Oxidase to Improve Tobacco Resistance to Salt Stress by Alleviating Oxidative Damage. Febs Letters, 594(8), 1284–1295. https://doi.org/10.1002/1873-3468.13723

Zandalinas, & Mittler, R. , B. D. , A. V. , & G. ‪Aurelio. (2017). Plant Adaptations to the Combination of Drought and High Temperatures. Physiologia Plantarum, 162(1), 2–12. https://doi.org/10.1111/ppl.12540‬

Zhang, J., Piao, C., Arii, R., Suzuki, T., Rao, X., Yamataka, A., Miyano, G., & Suda, K. (2026). Severe inflammation at the anastomotic site is associated with mitochondrial dysfunction following colocystoplasty in rats. Pediatric Surgery International, 42(1). https://doi.org/10.1007/s00383-025-06235-z

Zhao, C., Zhang, H., Song, C., Zhu, J., & Shabala, S. (2020). Mechanisms of Plant Responses and Adaptation to Soil Salinity. The Innovation, 1(1), 100017. https://doi.org/10.1016/j.xinn.2020.100017.

Zhou, Y., Wang, Y., Yan, M., Park, G., Wang, Q., & Yoon, J. (2026). A mitochondria-targeted near-infrared fluorescent probe with a large Stokes shift for detecting nitroreductase activity in cells and mouse tumors. Dyes and Pigments, 246. https://doi.org/10.1016/j.dyepig.2025.113379

Downloads

Published

2025-11-25

How to Cite

Nuryastuti, T. (2025). Integrative Analysis of Mitochondrial Dysfunction and Stress Signaling in Arabidopsis Roots Exposed to Salinity. Genomica : Journal of General Biochemistry, Genetics and Molecular Biology, 1(1), 30–39. Retrieved from https://journal.idscipub.com/index.php/genomica/article/view/1203