Real Time Traffic Engineering with In Band Telemetry in Software Defined Data Centers
DOI:
https://doi.org/10.61978/digitus.v3i3.974Keywords:
In Band Network Telemetry, Software Defined Networking, Traffic Engineering, Flow Completion Time, Programmable Data Planes, INT HULA, Queue TelemetryAbstract
As data centers scale to accommodate dynamic workloads, real-time and fine-grained traffic engineering (TE) becomes critical. Software Defined Networking (SDN) offers centralized control over data flows, yet its effectiveness is constrained by traditional telemetry mechanisms that lack responsiveness. In-Band Network Telemetry (INT) addresses this gap by embedding real-time path metrics directly into packets, enabling adaptive traffic control based on live network conditions. This study implements and evaluates INT in a programmable Clos fabric using P4 enabled switches. It compares three TE strategies: static ECMP, switch assisted CONGA, and INT informed INT HULA. The simulation incorporates synthetic and trace based data center workloads, including elephant flows and incast scenarios. Performance is assessed using flow completion time (FCT), queue depth, link utilization, and failure recovery speed. INT metadata sizes (32–96 bytes) are also analyzed to quantify overhead vs. performance trade offs. Results indicate that INT HULA consistently outperforms ECMP and CONGA. It reduces FCT by up to 50%, decreases queue occupancy by a factor of three, increases link utilization by more than 25%, and shortens reroute times from 85 ms to 20 ms. These gains are achieved with manageable telemetry overhead and without requiring hardware changes. INT’s real time visibility also improves decision making in centralized SDN controllers and supports hybrid TE architectures. In conclusion, INT fundamentally enhances SDN based TE by enabling closed loop, real time optimization. Its integration with programmable data planes and potential for AI based control loops positions it as a cornerstone of next generation data center networks.
References
Aditya, T., Donald, A. D., Thippanna, G., Kousar, M. M., & Rekha, K. (2023). Navigating the Network the Evolution of SDN Data Planes. International Journal of Advanced Research in Science Communication and Technology, 474–481. https://doi.org/10.48175/ijarsct-8525 DOI: https://doi.org/10.48175/IJARSCT-8525
Ammal, R. A., PC, S., & Chandra, S. S. V. (2020). Termite Inspired Algorithm for Traffic Engineering in Hybrid Software Defined Networks. Peerj Computer Science, 6, e283. https://doi.org/10.7717/peerj-cs.283 DOI: https://doi.org/10.7717/peerj-cs.283
Cheng, J., Bambrick, H., Yakob, L., Devine, G. J., Frentiu, F. D., Williams, G., Li, Z., Yang, W., & Hu, W. (2021). Extreme Weather Conditions and Dengue Outbreak in Guangdong, China: Spatial Heterogeneity Based on Climate Variability. Environmental Research, 196, 110900. https://doi.org/10.1016/j.envres.2021.110900 DOI: https://doi.org/10.1016/j.envres.2021.110900
Garcia, J. M., & Boussada, M. E. H. (2016). End-to-End Performance Evaluation of TCP Traffic Under Multi-Queuing Networks. International Journal of Communications Network and System Sciences, 09(06), 219–233. https://doi.org/10.4236/ijcns.2016.96021 DOI: https://doi.org/10.4236/ijcns.2016.96021
Gutiérrez-Téllez, L. J., Llanos-Tejada, F., & Vargas-Ponce, K. G. (2023). Clima Social Familiar Y Adherencia Al Tratamiento De Pacientes Con Tuberculosis Pulmonar en Un Hospital De Referencia Lima-Perú. Neurología Neurocirugía Y Psiquiatría, 51(1), 13–18. https://doi.org/10.35366/111040 DOI: https://doi.org/10.35366/111040
Haugg, T., Soltani, M. F., Häckel, T., Meyer, P., Korf, F., & Schmidt, T. C. (2021). Simulation-Based Evaluation of a Synchronous Transaction Model for Time-Sensitive Software-Defined Networks. https://doi.org/10.48550/arxiv.2110.00236
He, M., Varasteh, A., & Kellerer, W. (2019). Toward a Flexible Design of SDN Dynamic Control Plane: An Online Optimization Approach. Ieee Transactions on Network and Service Management, 16(4), 1694–1708. https://doi.org/10.1109/tnsm.2019.2935160 DOI: https://doi.org/10.1109/TNSM.2019.2935160
Hussain, M., Shah, N., Amin, R., Alshamrani, S. S., Alotaibi, A., & Raza, S. M. (2022). Software-Defined Networking: Categories, Analysis, and Future Directions. Sensors, 22(15), 5551. https://doi.org/10.3390/s22155551 DOI: https://doi.org/10.3390/s22155551
Moreolo, M. S., Nadal, L., & Fàbrega, J. M. (2016). SDN-enabled Optical Transmission Systems: Programmability and Advanced Features. 10 (4 .)-10 (4 .). https://doi.org/10.1049/cp.2016.0870 DOI: https://doi.org/10.1049/cp.2016.0870
Pupiales, C., Laselva, D., & Demirkol, I. (2021). Capacity and Congestion Aware Flow Control Mechanism for Efficient Traffic Aggregation in Multi-Radio Dual Connectivity. Ieee Access, 9, 114929–114944. https://doi.org/10.1109/access.2021.3105177 DOI: https://doi.org/10.1109/ACCESS.2021.3105177
Saber, M. A. S., Ghorbani, M., Bayati, A., Nguyen, K. K., & Cheriet, M. (2020). Online Data Center Traffic Classification Based on Inter-Flow Correlations. Ieee Access, 8, 60401–60416. https://doi.org/10.1109/access.2020.2983605 DOI: https://doi.org/10.1109/ACCESS.2020.2983605
Salazar, G. D. (2022). Hybrid Networking SDN and SD-WAN: Traditional Network Architectures and Software-Defined Networks Interoperability in Digitization Era. Journal of Computer Science and Technology, 22(1), e07. https://doi.org/10.24215/16666038.22.e07 DOI: https://doi.org/10.24215/16666038.22.e07
Sharma, R., & Mahalwar, A. A. (2020). Software-Defined Networking: Concepts and Applications. Turkish Journal of Computer and Mathematics Education (Turcomat), 11(3), 2872–2877. https://doi.org/10.61841/turcomat.v11i3.14652 DOI: https://doi.org/10.61841/turcomat.v11i3.14652
Ujcich, B. E., Jero, S., Skowyra, R., Gomez, S. R., Bates, A., Sanders, W. H., & Okhravi, H. (2020). Automated Discovery of Cross-Plane Event-Based Vulnerabilities in Software-Defined Networking. https://doi.org/10.14722/ndss.2020.24080 DOI: https://doi.org/10.14722/ndss.2020.24080
Ukon, Y., Yoshida, S., Ohteru, S., & Ikeda, N. (2021). Real-Time Virtual-Network-Traffic-Monitoring System With FPGA Accelerator. NTT Technical Review, 19(10), 51–60. https://doi.org/10.53829/ntr202110ra1 DOI: https://doi.org/10.53829/ntr202110ra1
Wang, Y., Lin, Y., & Chang, G. (2018). SDN‐based Dynamic Multipath Forwarding for Inter–data Center Networking. International Journal of Communication Systems, 32(1). https://doi.org/10.1002/dac.3843 DOI: https://doi.org/10.1002/dac.3843
Yan, F., Xie, C., Zhang, J., Xi, Y., Yao, Z., Liu, Y., Lin, X., Huang, J., Yu, C., Zhang, X., & Calabretta, N. (2023). Network Traffic Characteristics of Hyperscale Data Centers in the Era of Cloud Applications. Journal of Optical Communications and Networking, 15(10), 736. https://doi.org/10.1364/jocn.494291 DOI: https://doi.org/10.1364/JOCN.494291


