Ecosystem Resilience and Technological Innovation in Forest Fire Prevention and Recovery
Keywords:
Forest Fire Management, Climate Change Adaptation, Wildfire Prevention, Ecosystem Resilience, Prescribed Burning, Remote Sensing, Post-Fire RecoveryAbstract
Climate change has significantly altered forest fire regimes, increasing the frequency, severity, and unpredictability of wildfires across the globe. This narrative review aims to synthesize current strategies in forest fire management within the framework of climate change adaptation. Literature was collected from Scopus, Web of Science, and Google Scholar using relevant keyword combinations such as "forest fire management," "climate change adaptation," and "ecosystem resilience." Thematic analysis revealed that prevention through silviculture and prescribed burning remains fundamental in reducing fuel loads and mitigating fire intensity. Innovations in early detection, including satellite imagery, UAVs, and AI-based modeling, enhance predictive accuracy and improve response time. Adaptive post-fire management, particularly the use of native resprouter species and landscape heterogeneity, supports ecological recovery. Comparative case studies show that successful fire governance depends on localized approaches, inclusive policies, and technological integration. Challenges such as policy fragmentation, limited resources, and regeneration failure in frequently burned landscapes highlight the need for more holistic and proactive interventions. This study concludes that integrating ecosystem-based strategies with advanced technologies offers the most sustainable path forward. The findings advocate for multi-scalar policy reforms, increased community involvement, and interdisciplinary research to build fire-resilient landscapes in a changing climate.
References
Cochrane, M., Moran, C., Wimberly, M., Baer, A., Finney, M., Beckendorf, K., … & Zhu, Z. (2012). Estimation of wildfire size and risk changes due to fuels treatments. International Journal of Wildland Fire, 21(4), 357. https://doi.org/10.1071/wf11079
Coop, J., Parks, S., Stevens‐Rumann, C., Crausbay, S., Higuera, P., Hurteau, M., … & Rodman, K. (2020). Wildfire-driven forest conversion in western north american landscapes. Bioscience, 70(8), 659–673. https://doi.org/10.1093/biosci/biaa061
Creutzburg, M., Scheller, R., Lucash, M., LeDuc, S., & Johnson, M. (2017). Forest management scenarios in a changing climate: trade‐offs between carbon, timber, and old forest. Ecological Applications, 27(2), 503–518. https://doi.org/10.1002/eap.1460
Davis, K., Robles, M., Kemp, K., Higuera, P., Chapman, T., Metlen, K., … & Campbell, J. (2023). Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western united states. Proceedings of the National Academy of Sciences, 120(11). https://doi.org/10.1073/pnas.2208120120
Doherty, M., Lavorel, S., Colloff, M., Williams, K., & Williams, R. (2016). Moving from autonomous to planned adaptation in the montane forests of southeastern australia under changing fire regimes. Austral Ecology, 42(3), 309–316. https://doi.org/10.1111/aec.12437
Downing, W., Meigs, G., Gregory, M., & Krawchuk, M. (2021). Where and why do conifer forests persist in refugia through multiple fire events? Global Change Biology, 27(15), 3642–3656. https://doi.org/10.1111/gcb.15655
Enright, N. & Fontaine, J. (2013). Climate change and the management of fire‐prone vegetation in southwest and southeast australia. Geographical Research, 52(1), 34–44. https://doi.org/10.1111/1745-5871.12026
Green, D., Martin, M., Powell, R., McGregor, E., Gabriel, M., Pilgrim, K., … & Matthews, S. (2022). Mixed‐severity wildfire and salvage logging affect the populations of a forest‐dependent carnivoran and a competitor. Ecosphere, 13(1). https://doi.org/10.1002/ecs2.3877
Guimarães, N., Pádua, L., Marques, P., Silva, N., Peres, E., & Sousa, J. (2020). Forestry remote sensing from unmanned aerial vehicles: a review focusing on the data, processing and potentialities. Remote Sensing, 12(6), 1046. https://doi.org/10.3390/rs12061046
Halofsky, J., Conklin, D., Donato, D., Halofsky, J., & Kim, J. (2018). Climate change, wildfire, and vegetation shifts in a high-inertia forest landscape: western washington, u.s.a.. PLOS One, 13(12), e0209490. https://doi.org/10.1371/journal.pone.0209490
Hallema, D., Sun, G., Caldwell, P., Norman, S., Cohen, E., Liu, Y., … & McNulty, S. (2018). Burned forests impact water supplies. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03735-6
Hartter, J., Hamilton, L., Ducey, M., Boag, A., Salerno, J., Christoffersen, N., … & Stevens, F. (2020). Finding common ground: agreement on increasing wildfire risk crosses political lines. Environmental Research Letters, 15(6), 065002. https://doi.org/10.1088/1748-9326/ab7ace
Hecht, H., Krofcheck, D., Carril, D., & Hurteau, M. (2024). Estimating the influence of field inventory sampling intensity on forest landscape model performance for determining high-severity wildfire risk. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-53359-8
Hessburg, P., Charnley, S., Gray, A., Spies, T., Peterson, D., Flitcroft, R., … & Marshall, J. (2021). Climate and wildfire adaptation of inland northwest us forests. Frontiers in Ecology and the Environment, 20(1), 40–48. https://doi.org/10.1002/fee.2408
Holmquist, A., Markelz, R., Martinez, C., & Gillespie, R. (2024). The importance of habitat type and historical fire regimes in arthropod community response following large‐scale wildfires. Global Change Biology, 30(1). https://doi.org/10.1111/gcb.17135
Hurteau, M., Goodwin, M., Marsh, C., Zald, H., Collins, B., Meyer, M., … & North, M. (2024). Managing fire‐prone forests in a time of decreasing carbon carrying capacity. Frontiers in Ecology and the Environment, 22(10). https://doi.org/10.1002/fee.2801
Jeffery, K., Körte, L., Palla, F., Walters, G., White, L., & Abernethy, K. (2014). Fire management in a changing landscape: a case study from lopé national park, gabon. Parks, 20(1), 39–52. https://doi.org/10.2305/iucn.ch.2014.parks-20-1.kjj.en
Karavani, A., Boer, M., Baudena, M., Colinas, C., Díaz‐Sierra, R., García, J., … & Dios, V. (2018). Fire‐induced deforestation in drought‐prone mediterranean forests: drivers and unknowns from leaves to communities. Ecological Monographs, 88(2), 141–169. https://doi.org/10.1002/ecm.1285
Keenan, R. & Nitschke, C. (2016). Forest management options for adaptation to climate change: a case study of tall, wet eucalypt forests in victoria’s central highlands region. Australian Forestry, 79(2), 96–107. https://doi.org/10.1080/00049158.2015.1130095
Keith, D., Allen, S., Gallagher, R., Mackenzie, B., Auld, T., Barrett, S., … & Tozer, M. (2022). Fire‐related threats and transformational change in australian ecosystems. Global Ecology and Biogeography, 31(10), 2070–2084. https://doi.org/10.1111/geb.13500
Krofcheck, D., Hurteau, M., Scheller, R., & Loudermilk, E. (2017). Restoring surface fire stabilizes forest carbon under extreme fire weather in the sierra nevada. Ecosphere, 8(1). https://doi.org/10.1002/ecs2.1663
Lund, M., Nordling, K., Gjelsvik, A., & Samset, B. (2023). The influence of variability on fire weather conditions in high latitude regions under present and future global warming. Environmental Research Communications, 5(6), 065016. https://doi.org/10.1088/2515-7620/acdfad
Manley, P., Long, J., & Scheller, R. (2024). Keeping up with the landscapes: promoting resilience in dynamic social-ecological systems. Ecology and Society, 29(1). https://doi.org/10.5751/es-14563-290103
North, M., York, R., Collins, B., Hurteau, M., Jones, G., Knapp, E., … & Tubbesing, C. (2021). Pyrosilviculture needed for landscape resilience of dry western united states forests. Journal of Forestry, 119(5), 520–544. https://doi.org/10.1093/jofore/fvab026
O’Connor, C., Falk, D., & Garfin, G. (2020). Projected climate-fire interactions drive forest to shrubland transition on an arizona sky island. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.00137
Prichard, S., Hessburg, P., Hagmann, R., Povak, N., Dobrowski, S., Hurteau, M., … & Khatri‐Chhetri, P. (2021). Adapting western north american forests to climate change and wildfires: 10 common questions. Ecological Applications, 31(8). https://doi.org/10.1002/eap.2433
Rammer, W., Braziunas, K., Hansen, W., Ratajczak, Z., Westerling, A., Turner, M., … & Seidl, R. (2021). Widespread regeneration failure in forests of greater yellowstone under scenarios of future climate and fire. Global Change Biology, 27(18), 4339–4351. https://doi.org/10.1111/gcb.15726
Ruffault, J. & Mouillot, F. (2017). Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a french mediterranean region. International Journal of Wildland Fire, 26(6), 498. https://doi.org/10.1071/wf16181
Sample, M., Thode, A., Peterson, C., Gallagher, M., Flatley, W., Friggens, M., … & Swanston, C. (2022). Adaptation strategies and approaches for managing fire in a changing climate. Climate, 10(4), 58. https://doi.org/10.3390/cli10040058
Schoennagel, T., Balch, J., Brenkert‐Smith, H., Dennison, P., Harvey, B., Krawchuk, M., … & Whitlock, C. (2017). Adapt to more wildfire in western north american forests as climate changes. Proceedings of the National Academy of Sciences, 114(18), 4582–4590. https://doi.org/10.1073/pnas.1617464114
Schwartz, M., Butt, N., Dolanc, C., Holguin, A., Moritz, M., North, M., … & Mantgem, P. (2015). Increasing elevation of fire in the sierra nevada and implications for forest change. Ecosphere, 6(7), 1–10. https://doi.org/10.1890/es15-00003.1
Taylor, A. & Scholl, A. (2012). Climatic and human influences on fire regimes in mixed conifer forests in yosemite national park, usa. Forest Ecology and Management, 267, 144–156. https://doi.org/10.1016/j.foreco.2011.11.026
Vega-Nieva, D., Nava‐Miranda, M., Briseño-Reyes, J., López-Serrano, P., Corral‐Rivas, J., Cruz-López, M., … & Burgan, R. (2023). Modeling the monthly distribution of modis active fire detections from a satellite-derived fuel dryness index by vegetation type and ecoregion in mexico. Fire, 7(1), 11. https://doi.org/10.3390/fire7010011
Venäläinen, A., Lehtonen, I., Laapas, M., Ruosteenoja, K., Tikkanen, O., Viiri, H., … & Peltola, H. (2020). Climate change induces multiple risks to boreal forests and forestry in finland: a literature review. Global Change Biology, 26(8), 4178–4196. https://doi.org/10.1111/gcb.15183
Verma, P., Gangwar, A., Singh, B., Singh, S., Vats, P., & Ganesh, R. (2023). Developing a robotic solar-powered fire detection and avoidance system with machine learning-based sensing. IEEE International Conference on Computing, Communication, Security and Artificial Intelligence, 1–5. https://doi.org/10.1109/iccsai59793.2023.10420914
Wang, S., Lim, C., & Lee, W. (2021). A review of forest fire and policy response for resilient adaptation under changing climate in the eastern himalayan region. Forest Science and Technology, 17(4), 180–188. https://doi.org/10.1080/21580103.2021.1979108
Wei, X., Wang, G., Chen, T., Hagan, D., & Ullah, W. (2020). A spatio-temporal analysis of active fires over china during 2003–2016. Remote Sensing, 12(11), 1787. https://doi.org/10.3390/rs12111787
Wilkin, K., Ackerly, D., & Stephens, S. (2016). Climate change refugia, fire ecology and management. Forests, 7(4), 77. https://doi.org/10.3390/f7040077
Wood, C. & Jones, G. (2019). Framing management of social-ecological systems in terms of the cost of failure: the sierra nevada, usa as a case study. Environmental Research Letters, 14(10), 105004. https://doi.org/10.1088/1748-9326/ab4033
Wotton, B., Flannigan, M., & Marshall, G. (2017). Potential climate change impacts on fire intensity and key wildfire suppression thresholds in canada. Environmental Research Letters, 12(9), 095003. https://doi.org/10.1088/1748-9326/aa7e6e
Yang, W., Gardelin, M., Olsson, J., & Bosshard, T. (2015). Multi-variable bias correction: application of forest fire risk in present and future climate in sweden. Natural Hazards and Earth System Science, 15(9), 2037–2057. https://doi.org/10.5194/nhess-15-2037-2015
Zeller, K., Povak, N., Manley, P., Flake, S., & Hefty, K. (2023). Managing for biodiversity: the effects of climate, management and natural disturbance on wildlife species richness. Diversity and Distributions, 29(12), 1623–1638. https://doi.org/10.1111/ddi.13782
Ziel, R., Bieniek, P., Bhatt, U., Strader, H., Rupp, T., & York, A. (2020). A comparison of fire weather indices with modis fire days for the natural regions of alaska. Forests, 11(5), 516. https://doi.org/10.3390/f11050516