Pometia pinnata Leaf Extract As a Natural Larvicide For aedes aegypti Mosquitoes, A Vector Of Dengue Haemorrhagic Fever (DHF) Disease
DOI:
https://doi.org/10.61978/medicor.v2i1.200Keywords:
Pometia pinnata, Dengue fever, Aedes aegyptiAbstract
Dengue Haemorrhagic Fever (DHF) is a rapid-onset infection caused by the Dengue virus that can lead to severe shock and even death. Pometia pinnata, a plant found in the Maluku region, possesses untapped therapeutic potential despite the presence of secondary metabolite chemicals believed to have larvicidal properties. This study aims to evaluate the biolarvicidal efficacy of the leaf extract of Pometia pinnata against Aedes aegypti's larvae, a DHF carrier. The extraction process used the maceration technique employing ethanol as the solvent. A larvicidal experiment was performed to evaluate the bioactivity against Aedes aegypti larvae. The findings indicated that the leaf extract of Pometia pinnata possesses larvicidal properties against Aedes aegypti larvae, as evidenced by an LC50 value of 0.101%. The results offer insights into the possible utilisation of Pometia pinnata leaf extract as a viable source of active compounds for developing biolarvicides to control dengue vectors.
References
Aldridge, R. L., Gibson, S., & Linthicum, K. J. (2024). AEDES AEGYPTI CONTROLS AE. AEGYPTI: SIT AND IIT-AN OVERVIEW. Journal of the American Mosquito Control Association, 40(1), 32–49. https://doi.org/10.2987/23-7154
Ananda, N. D., Rachmawati, K., Lastuti, N. D. R., Suwanti, L. T., Hidajanti, N., & Meles, D. K. (2023). The Effectiveness of Ethanol Extract of Ketapang Leaves (Terminalia catappa L.) as a Larvicidal Against Aedes aegypti Mosquito Larvae. Journal of Basic Medical Veterinary, 12(1), 1–7. https://doi.org/10.20473/jbmv.v12i1.42248
Aravinth, A., Dhanasundaram, S., Perumal, P., Vengateshwaran, T. D., Thavamurugan, S., & Rajaram, R. (2023). Biological activities of the brown seaweed Dictyota ciliolata with special reference to the human diseases transmitting Aedes aegypti’s larvae. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03928-0
Asgari, S. (2023). Cross-kingdom RNAi to enhance the efficacy of insect pathogens. Trends in Parasitology, 39(1), 4–6. https://doi.org/10.1016/j.pt.2022.11.001
Bodlah, M. A., Iqbal, J., Ashiq, A., Bodlah, I., Jiang, S., Mudassir, M. A., & Fareen, A. G. E. (2023). Insect behavioral restraint and adaptation strategies under heat stress: An inclusive review. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2023.02.004
Choi, L., Majambere, S., & Wilson, A. L. (2019). Larviciding to prevent malaria transmission. The Cochrane Database of Systematic Reviews, 8. https://doi.org/10.1002/14651858.CD012736.pub2
Cui, C., Yang, Y., Zhao, T., Zou, K., Peng, C., Cai, H., & Hou, R. (2019). Insecticidal activity and insecticidal mechanism of total saponins from Camellia oleifera. Molecules, 24(24), 4518. https://doi.org/10.3390/molecules24244518
Delimont, N. M., Haub, M. D., & Lindshield, B. L. (2017). The impact of tannin consumption on iron bioavailability and status: A narrative review. Current Developments in Nutrition, 1(2), 1–12. https://doi.org/10.3945/cdn.116.000042
Divekar, P. A., Narayana, S., Divekar, B. A., Kumar, R., Gadratagi, B. G., Ray, A., & Behera, T. K. (2022). Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences, 23(5), 2690. https://doi.org/10.3390/ijms23052690
Finetti, L., Paluzzi, J.-P., Orchard, I., & Lange, A. B. (2023). Octopamine and tyramine signalling in Aedes aegypti: Molecular characterization and insight into potential physiological roles. PLoS ONE, 18(2 February). https://doi.org/10.1371/journal.pone.0281917
Francis, G., Kerem, Z., Makkar, H. P., & Becker, K. (2002). The biological action of saponins in animal systems: a review. British Journal of Nutrition, 88(6), 587–605. https://doi.org/10.1079/BJN2002725
Huang, Q., Liu, X., Zhao, G., Hu, T., & Wang, Y. (2018). Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, 4(2), 137–150. https://doi.org/10.1016/j.aninu.2017.09.004
Jaffal, A., Fite, J., Baldet, T., Delaunay, P., Jourdain, F., Mora-Castillo, R., Olive, M.-M., & Roiz, D. (2023). Current evidences of the efficacy of mosquito mass-trapping interventions to reduce Aedes aegypti and Aedes albopictus populations and Aedes-borne virus transmission. PLoS Neglected Tropical Diseases, 17(3). https://doi.org/10.1371/journal.pntd.0011153
Janatiningrum, I., Zahra, A., & Anggia, V. (2024). Rhizosphere actinobacteria isolated from Pometia pinnata and its antimicrobial activity. Biodiversitas, 25(3), 1007–1014. https://doi.org/10.13057/biodiv/d250313
Khoo, Y. W., Khaw, Y. S., Tan, H. T., Li, S.-F., & Chong, K. P. (2023). First Report of Macrophomina phaseolina Causing Leaf Blight on Pometia pinnata in Malaysia. Plant Disease, 107(1), 230. https://doi.org/10.1094/PDIS-11-21-2478-PDN
Khu, A., Syahputra, R. A., Lie, S., Nugraha, S. E., & Situmorang, P. C. (2021). Amelioration of cisplatin-induced kidney injury by pometia pinnata. Pharmacognosy Journal, 13(5), 1257–1268. https://doi.org/10.5530/pj.2021.13.159
Kraemer, M. U. G., Reiner, R. C., Brady, O. J., Messina, J. P., Gilbert, M., Pigott, D. M., Yi, D., Johnson, K., Earl, L., Marczak, L. B., Shirude, S., Davis Weaver, N., Bisanzio, D., Perkins, T. A., Lai, S., Lu, X., Jones, P., Coelho, G. E., Carvalho, R. G., & Golding, N. (2019). Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 4(5), 854–863. https://doi.org/10.1038/s41564-019-0376-y
Krokovsky, L., Lins, C. R. B., Guedes, D. R. D., Wallau, G. D. L., Ayres, C. F. J., & Paiva, M. H. S. (2023). Dynamic of Mayaro Virus Transmission in Aedes aegypti, Culex quinquefasciatus Mosquitoes, and a Mice Model. Viruses, 15(3). https://doi.org/10.3390/v15030799
Lim, H., Lee, S. Y., Ho, L. Y., & Sit, N. W. (2023). Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia. Insects, 14(6), 512. https://doi.org/10.3390/insects14060512
Martini, M., Hestiningsih, R., Widjanarko, B., & Purwantisari, S. (2019). Resistance of Aedes as a Vectors Potential for Dengue Hemorrhagic Fever (DHF) in Semarang City, Indonesia. J Trop Life Sci, 9(1), 89–94. https://doi.org/10.11594/jtls.09.01.12
Meena, D. K., Sahoo, A. K., Swain, H. S., Borah, S., Srivastava, P. P., Sahu, N. P., & Das, B. K. (2020). Prospects and Perspectives of Virtual In-vitro Toxicity Studies on Herbal Extracts of Terminalia Arjuna with Enhanced Stratagem in Artemia salina model: A Panacea to Explicit the Credence of the Solvent System in Brine Shrimp Lethality Bioassay. Emirates Journal of Food and Agriculture, 32(1), 25–37. https://doi.org/10.9755/ejfa.2020.v32.i1.2055
Mikołajczyk-Bator, K. (2022). The significance of saponins in shaping the quality of food products from red beet. Acta Scientiarum Polonorum Technologia Alimentaria, 21(1), 81–90. https://doi.org/10.17306/J.AFS.1012
Mohammad, F. V, Noorwala, M., Ahmad, V. U., Zahoor, A., & Lajis, N. H. J. (2012). A new monodesmosidic triterpenoid saponin from the leaves of Pometia pinnata. Natural Product Communications, 7(11), 1423–1426. https://doi.org/10.1177/1934578x1200701105
Organization, W. H. (2020). Dengue. Guidline for Diagnosis, Treatment, Prevention and Control (New).
Penilla-Navarro, P., Solis-Santoyo, F., Lopez-Solis, A., Rodriguez, A. D., Vera-Maloof, F., Lozano, S., Contreras-Mejıa, E., Vazquez-Samayoa, G., Torreblanca-Lopez, R., Perera, R., Black, W. C., & Saavedra-Rodriguez, K. (2024). Pyrethroid susceptibility reversal in Aedes aegypti: A longitudinal study in Tapachula, Mexico. PLoS Neglected Tropical Diseases, 18(1). https://doi.org/10.1371/journal.pntd.0011369
Rao, P., Ninama, J., Dudhat, M., Goswami, D., & Rawal, R. M. (2023). Curcumin interferes with chitin synthesis in Aedes aegypti: a computational and experimental investigation. Molecular Diversity. https://doi.org/10.1007/s11030-023-10672-0
Razoki, R. (2023). Antioxidant and Antibacterial Activities of Ethanol Extract of Matoa (Pometia pinnata) Leaves. Journal of Pharmaceutical and Sciences, 6(2), 351–357. https://doi.org/10.36490/journal-jps.com.v6i2.97
Rodrigues dos Santos, D., Lopes Chaves, L., Couto Pires, V., Soares Rodrigues, J., Alves Siqueira de Assunção, M., Bezerra Faierstein, G., Gomes Barbosa Neto, A., de Souza Rebouças, J., Christine de Magalhães Cabral Albuquerque, E., Alexandre Beisl Vieira de Melo, S., Costa Gaspar, M., Maria Rodrigues Barbosa, R., Elga Medeiros Braga, M., Cipriano de Sousa, H., & Rocha Formiga, F. (2023). New weapons against the disease vector Aedes aegypti: From natural products to nanoparticles. International Journal of Pharmaceutics, 643. https://doi.org/10.1016/j.ijpharm.2023.123221
Souza Wuillda, A. C. J., Campos Martins, R. C., & Costa, F. D. N. (2019). Larvicidal activity of secondary plant metabolites in Aedes aegypti control: An overview of the previous 6 years. Natural Product Communications, 14(7), 1934578 19862893. https://doi.org/10.1177/1934578X19862893
Suedee, A., Tewtrakul, S., & Panichayupakaranant, P. (2013). Anti-HIV-1 integrase compound from Pometia pinnata leaves. Pharmaceutical Biology, 51(10), 1256–1261. https://doi.org/10.3109/13880209.2013.786098
Sujatmiko, F., Sahroni, I., Fadillah, G., & Fatimah, I. (2021). Visible light-responsive photocatalyst of SnO2/rGO prepared using Pometia pinnata leaf extract. Open Chemistry, 19(1), 174–183. https://doi.org/10.1515/chem-2020-0117
Syahrani, L., Permana, D. H., Syafruddin, D., Zubaidah, S., Asih, P. B., Rozi, I. E., & Lobo, N. F. (2022). An inventory of human night-biting mosquitoes and their bionomics in Sumba, Indonesia. PLoS Neglected Tropical Diseases, 16(3), 10316. https://doi.org/10.1371/journal.pntd.0010316
Tanamatayarat, P. (2016). Antityrosinase, Antioxidative Activities, and Brine Shrimp Lethality of Ethanolic Extracts from Protium serratum (Wall. ex Colebr.) Engl. Asian Pacific Journal of Tropical Biomedicine, 6(12), 1050–1055. https://doi.org/10.1016/j.apjtb.2016.10.001
Thambi, P. J., Modahl, C. M., & Kini, R. M. (2024). Niemann–Pick Type C2 Proteins in Aedes aegypti: Molecular Modelling and Prediction of Their Structure–Function Relationships. International Journal of Molecular Sciences, 25(3). https://doi.org/10.3390/ijms25031684
Wang, W. H., Urbina, A. N., Chang, M. R., Assavalapsakul, W., Lu, P. L., Chen, Y. H., & Wang, S. F. (2020). Dengue hemorrhagic fever–A systemic literature review of current perspectives on pathogenesis, prevention and control. Journal of Microbiology, Immunology and Infection, 53(6), 963–978. https://doi.org/10.1016/j.jmii.2020.03.007
Wijayanti, S. P., Sunaryo, S., Suprihatin, S., McFarlane, M., Rainey, S. M., Dietrich, I., & Kohl, A. (2016). Dengue in Java, Indonesia: relevance of mosquito indices as risk predictors. PLoS Neglected Tropical Diseases, 10(3), 4500. https://doi.org/10.1371/journal.pntd.0004500