Pometia pinnata Leaf Extract As a Natural Larvicide For aedes aegypti Mosquitoes, A Vector Of Dengue Haemorrhagic Fever (DHF) Disease

Authors

  • Abdul M Ukratalo Universitas Pattimura
  • Dodikrisno E Manery Pattimura University, Indonesia
  • Achmad Syuaib Tadulako University, Indonesia
  • Alfaro Muhammad Pattimura University, Indonesia
  • Bill E Nanere Pattimura University, Indonesia
  • Abdur Rahman Assagaf Pattimura University, Indonesia

DOI:

https://doi.org/10.61978/medicor.v2i1.200

Keywords:

Pometia pinnata, Dengue fever, Aedes aegypti

Abstract

Dengue Haemorrhagic Fever (DHF) is a rapid-onset infection caused by the Dengue virus that can lead to severe shock and even death. Pometia pinnata, a plant found in the Maluku region, possesses untapped therapeutic potential despite the presence of secondary metabolite chemicals believed to have larvicidal properties. This study aims to evaluate the biolarvicidal efficacy of the leaf extract of Pometia pinnata against Aedes aegypti's larvae, a DHF carrier. The extraction process used the maceration technique employing ethanol as the solvent. A larvicidal experiment was performed to evaluate the bioactivity against Aedes aegypti larvae. The findings indicated that the leaf extract of Pometia pinnata possesses larvicidal properties against Aedes aegypti larvae, as evidenced by an LC50 value of 0.101%. The results offer insights into the possible utilisation of Pometia pinnata leaf extract as a viable source of active compounds for developing biolarvicides to control dengue vectors.

References

Aldridge, R. L., Gibson, S., & Linthicum, K. J. (2024). AEDES AEGYPTI CONTROLS AE. AEGYPTI: SIT AND IIT-AN OVERVIEW. Journal of the American Mosquito Control Association, 40(1), 32–49. https://doi.org/10.2987/23-7154

Ananda, N. D., Rachmawati, K., Lastuti, N. D. R., Suwanti, L. T., Hidajanti, N., & Meles, D. K. (2023). The Effectiveness of Ethanol Extract of Ketapang Leaves (Terminalia catappa L.) as a Larvicidal Against Aedes aegypti Mosquito Larvae. Journal of Basic Medical Veterinary, 12(1), 1–7. https://doi.org/10.20473/jbmv.v12i1.42248

Aravinth, A., Dhanasundaram, S., Perumal, P., Vengateshwaran, T. D., Thavamurugan, S., & Rajaram, R. (2023). Biological activities of the brown seaweed Dictyota ciliolata with special reference to the human diseases transmitting Aedes aegypti’s larvae. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-03928-0

Asgari, S. (2023). Cross-kingdom RNAi to enhance the efficacy of insect pathogens. Trends in Parasitology, 39(1), 4–6. https://doi.org/10.1016/j.pt.2022.11.001

Bodlah, M. A., Iqbal, J., Ashiq, A., Bodlah, I., Jiang, S., Mudassir, M. A., & Fareen, A. G. E. (2023). Insect behavioral restraint and adaptation strategies under heat stress: An inclusive review. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2023.02.004

Choi, L., Majambere, S., & Wilson, A. L. (2019). Larviciding to prevent malaria transmission. The Cochrane Database of Systematic Reviews, 8. https://doi.org/10.1002/14651858.CD012736.pub2

Cui, C., Yang, Y., Zhao, T., Zou, K., Peng, C., Cai, H., & Hou, R. (2019). Insecticidal activity and insecticidal mechanism of total saponins from Camellia oleifera. Molecules, 24(24), 4518. https://doi.org/10.3390/molecules24244518

Delimont, N. M., Haub, M. D., & Lindshield, B. L. (2017). The impact of tannin consumption on iron bioavailability and status: A narrative review. Current Developments in Nutrition, 1(2), 1–12. https://doi.org/10.3945/cdn.116.000042

Divekar, P. A., Narayana, S., Divekar, B. A., Kumar, R., Gadratagi, B. G., Ray, A., & Behera, T. K. (2022). Plant secondary metabolites as defense tools against herbivores for sustainable crop protection. International Journal of Molecular Sciences, 23(5), 2690. https://doi.org/10.3390/ijms23052690

Finetti, L., Paluzzi, J.-P., Orchard, I., & Lange, A. B. (2023). Octopamine and tyramine signalling in Aedes aegypti: Molecular characterization and insight into potential physiological roles. PLoS ONE, 18(2 February). https://doi.org/10.1371/journal.pone.0281917

Francis, G., Kerem, Z., Makkar, H. P., & Becker, K. (2002). The biological action of saponins in animal systems: a review. British Journal of Nutrition, 88(6), 587–605. https://doi.org/10.1079/BJN2002725

Huang, Q., Liu, X., Zhao, G., Hu, T., & Wang, Y. (2018). Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Animal Nutrition, 4(2), 137–150. https://doi.org/10.1016/j.aninu.2017.09.004

Jaffal, A., Fite, J., Baldet, T., Delaunay, P., Jourdain, F., Mora-Castillo, R., Olive, M.-M., & Roiz, D. (2023). Current evidences of the efficacy of mosquito mass-trapping interventions to reduce Aedes aegypti and Aedes albopictus populations and Aedes-borne virus transmission. PLoS Neglected Tropical Diseases, 17(3). https://doi.org/10.1371/journal.pntd.0011153

Janatiningrum, I., Zahra, A., & Anggia, V. (2024). Rhizosphere actinobacteria isolated from Pometia pinnata and its antimicrobial activity. Biodiversitas, 25(3), 1007–1014. https://doi.org/10.13057/biodiv/d250313

Khoo, Y. W., Khaw, Y. S., Tan, H. T., Li, S.-F., & Chong, K. P. (2023). First Report of Macrophomina phaseolina Causing Leaf Blight on Pometia pinnata in Malaysia. Plant Disease, 107(1), 230. https://doi.org/10.1094/PDIS-11-21-2478-PDN

Khu, A., Syahputra, R. A., Lie, S., Nugraha, S. E., & Situmorang, P. C. (2021). Amelioration of cisplatin-induced kidney injury by pometia pinnata. Pharmacognosy Journal, 13(5), 1257–1268. https://doi.org/10.5530/pj.2021.13.159

Kraemer, M. U. G., Reiner, R. C., Brady, O. J., Messina, J. P., Gilbert, M., Pigott, D. M., Yi, D., Johnson, K., Earl, L., Marczak, L. B., Shirude, S., Davis Weaver, N., Bisanzio, D., Perkins, T. A., Lai, S., Lu, X., Jones, P., Coelho, G. E., Carvalho, R. G., & Golding, N. (2019). Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 4(5), 854–863. https://doi.org/10.1038/s41564-019-0376-y

Krokovsky, L., Lins, C. R. B., Guedes, D. R. D., Wallau, G. D. L., Ayres, C. F. J., & Paiva, M. H. S. (2023). Dynamic of Mayaro Virus Transmission in Aedes aegypti, Culex quinquefasciatus Mosquitoes, and a Mice Model. Viruses, 15(3). https://doi.org/10.3390/v15030799

Lim, H., Lee, S. Y., Ho, L. Y., & Sit, N. W. (2023). Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia. Insects, 14(6), 512. https://doi.org/10.3390/insects14060512

Martini, M., Hestiningsih, R., Widjanarko, B., & Purwantisari, S. (2019). Resistance of Aedes as a Vectors Potential for Dengue Hemorrhagic Fever (DHF) in Semarang City, Indonesia. J Trop Life Sci, 9(1), 89–94. https://doi.org/10.11594/jtls.09.01.12

Meena, D. K., Sahoo, A. K., Swain, H. S., Borah, S., Srivastava, P. P., Sahu, N. P., & Das, B. K. (2020). Prospects and Perspectives of Virtual In-vitro Toxicity Studies on Herbal Extracts of Terminalia Arjuna with Enhanced Stratagem in Artemia salina model: A Panacea to Explicit the Credence of the Solvent System in Brine Shrimp Lethality Bioassay. Emirates Journal of Food and Agriculture, 32(1), 25–37. https://doi.org/10.9755/ejfa.2020.v32.i1.2055

Mikołajczyk-Bator, K. (2022). The significance of saponins in shaping the quality of food products from red beet. Acta Scientiarum Polonorum Technologia Alimentaria, 21(1), 81–90. https://doi.org/10.17306/J.AFS.1012

Mohammad, F. V, Noorwala, M., Ahmad, V. U., Zahoor, A., & Lajis, N. H. J. (2012). A new monodesmosidic triterpenoid saponin from the leaves of Pometia pinnata. Natural Product Communications, 7(11), 1423–1426. https://doi.org/10.1177/1934578x1200701105

Organization, W. H. (2020). Dengue. Guidline for Diagnosis, Treatment, Prevention and Control (New).

Penilla-Navarro, P., Solis-Santoyo, F., Lopez-Solis, A., Rodriguez, A. D., Vera-Maloof, F., Lozano, S., Contreras-Mejıa, E., Vazquez-Samayoa, G., Torreblanca-Lopez, R., Perera, R., Black, W. C., & Saavedra-Rodriguez, K. (2024). Pyrethroid susceptibility reversal in Aedes aegypti: A longitudinal study in Tapachula, Mexico. PLoS Neglected Tropical Diseases, 18(1). https://doi.org/10.1371/journal.pntd.0011369

Rao, P., Ninama, J., Dudhat, M., Goswami, D., & Rawal, R. M. (2023). Curcumin interferes with chitin synthesis in Aedes aegypti: a computational and experimental investigation. Molecular Diversity. https://doi.org/10.1007/s11030-023-10672-0

Razoki, R. (2023). Antioxidant and Antibacterial Activities of Ethanol Extract of Matoa (Pometia pinnata) Leaves. Journal of Pharmaceutical and Sciences, 6(2), 351–357. https://doi.org/10.36490/journal-jps.com.v6i2.97

Rodrigues dos Santos, D., Lopes Chaves, L., Couto Pires, V., Soares Rodrigues, J., Alves Siqueira de Assunção, M., Bezerra Faierstein, G., Gomes Barbosa Neto, A., de Souza Rebouças, J., Christine de Magalhães Cabral Albuquerque, E., Alexandre Beisl Vieira de Melo, S., Costa Gaspar, M., Maria Rodrigues Barbosa, R., Elga Medeiros Braga, M., Cipriano de Sousa, H., & Rocha Formiga, F. (2023). New weapons against the disease vector Aedes aegypti: From natural products to nanoparticles. International Journal of Pharmaceutics, 643. https://doi.org/10.1016/j.ijpharm.2023.123221

Souza Wuillda, A. C. J., Campos Martins, R. C., & Costa, F. D. N. (2019). Larvicidal activity of secondary plant metabolites in Aedes aegypti control: An overview of the previous 6 years. Natural Product Communications, 14(7), 1934578 19862893. https://doi.org/10.1177/1934578X19862893

Suedee, A., Tewtrakul, S., & Panichayupakaranant, P. (2013). Anti-HIV-1 integrase compound from Pometia pinnata leaves. Pharmaceutical Biology, 51(10), 1256–1261. https://doi.org/10.3109/13880209.2013.786098

Sujatmiko, F., Sahroni, I., Fadillah, G., & Fatimah, I. (2021). Visible light-responsive photocatalyst of SnO2/rGO prepared using Pometia pinnata leaf extract. Open Chemistry, 19(1), 174–183. https://doi.org/10.1515/chem-2020-0117

Syahrani, L., Permana, D. H., Syafruddin, D., Zubaidah, S., Asih, P. B., Rozi, I. E., & Lobo, N. F. (2022). An inventory of human night-biting mosquitoes and their bionomics in Sumba, Indonesia. PLoS Neglected Tropical Diseases, 16(3), 10316. https://doi.org/10.1371/journal.pntd.0010316

Tanamatayarat, P. (2016). Antityrosinase, Antioxidative Activities, and Brine Shrimp Lethality of Ethanolic Extracts from Protium serratum (Wall. ex Colebr.) Engl. Asian Pacific Journal of Tropical Biomedicine, 6(12), 1050–1055. https://doi.org/10.1016/j.apjtb.2016.10.001

Thambi, P. J., Modahl, C. M., & Kini, R. M. (2024). Niemann–Pick Type C2 Proteins in Aedes aegypti: Molecular Modelling and Prediction of Their Structure–Function Relationships. International Journal of Molecular Sciences, 25(3). https://doi.org/10.3390/ijms25031684

Wang, W. H., Urbina, A. N., Chang, M. R., Assavalapsakul, W., Lu, P. L., Chen, Y. H., & Wang, S. F. (2020). Dengue hemorrhagic fever–A systemic literature review of current perspectives on pathogenesis, prevention and control. Journal of Microbiology, Immunology and Infection, 53(6), 963–978. https://doi.org/10.1016/j.jmii.2020.03.007

Wijayanti, S. P., Sunaryo, S., Suprihatin, S., McFarlane, M., Rainey, S. M., Dietrich, I., & Kohl, A. (2016). Dengue in Java, Indonesia: relevance of mosquito indices as risk predictors. PLoS Neglected Tropical Diseases, 10(3), 4500. https://doi.org/10.1371/journal.pntd.0004500

Downloads

Published

2024-01-04

How to Cite

Ukratalo, A. M., Manery, D. E., Syuaib, A., Muhammad, A., Nanere, B. E., & Assagaf, A. R. (2024). Pometia pinnata Leaf Extract As a Natural Larvicide For aedes aegypti Mosquitoes, A Vector Of Dengue Haemorrhagic Fever (DHF) Disease. Medicor : Journal of Health Informatics and Health Policy, 2(1), 23–32. https://doi.org/10.61978/medicor.v2i1.200

Issue

Section

Articles