Medicor: Journal of Health Informatics and Health Policy

E-ISSN: 3030-9166

Volume. 3, Issue 2, April 2025

Page No: 96-109

The Role of IoT and Emerging Technologies in Shaping Smart Hospitals

Adhe Sofyan Anas¹, Alchamdani², Sadli Syam3, Arwan⁴, Firmansyah⁵

12345 Universitas Tadulako, Indonesia

Correspondent: adhesofyan@untad.ac.id1

Received : February 26, 2025 Accepted : April 16, 2025 Published : April 30, 2025

Citation: Anas. A, S., Alchamdani., Syam, S., Arwan., Firmansyah. (2025). The Role of IoT and Emerging Technologies in Shaping Smart Hospitals. Medicor: Journal of Health Informatics and Health Policy, 3(2), 96-109.

ABSTRACT: Smart hospitals represent a transformative model in healthcare, leveraging Internet of Things (IoT), artificial intelligence (AI), big data, and blockchain to improve operational efficiency and patient safety. This narrative review synthesizes current literature on the implementation and impact of these technologies in hospital environments. The findings show that IoT integration reduces operational redundancies, enhances real-time patient monitoring, and supports predictive analytics to prevent clinical errors. Supporting technologies such as AI and blockchain strengthen data-driven decision-making and secure data management. However, challenges persist, including interoperability issues, cybersecurity risks, and disparities in adoption across regions. The review underscores the importance of policy frameworks, workforce readiness, and governance structures in enabling successful implementation. Future research should prioritize longitudinal comparative studies to better evaluate the long-term effects of smart hospitals and promote equitable digital transformation in healthcare systems.

Keywords: Smart Hospitals Internet Of Things, Patient Safety, Operational Efficiency, Digital Healthcare Transformation, Artificial Intelligence, Big Data...

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

The transformation of healthcare systems in the twenty-first century has been marked by rapid technological advancements, with smart hospitals emerging as a paradigm shift in how medical services are delivered and managed. Smart hospitals represent an innovative convergence of healthcare and advanced technologies, primarily driven by the Internet of Things (IoT), artificial intelligence (AI), big data, and cloud computing. By leveraging these interconnected technologies, smart hospitals seek to optimize operational efficiency, improve clinical outcomes, and strengthen patient safety (Pandey & Pandey, 2022; Singh & Kaunert, 2024; Akbarzadeh et al., 2021). The transition toward smart hospitals highlights a broader trend in the digitization of healthcare services, in which technology integration allows for seamless communication between systems, real-time monitoring, and data-driven decision-making, all of which contribute to a holistic and patient-centered model of care.

The foundation of smart hospitals lies in the application of IoT-enabled devices and interconnected systems that transform traditional hospital management into dynamic, data-rich environments. IoT integration facilitates diverse applications ranging from smart beds capable of monitoring vital signs to wearable health devices providing continuous streams of patient data to healthcare providers (Taryudi, 2025; Pati et al., 2022). These applications enhance remote patient management, enable continuous assessment of health conditions, and provide the basis for timely interventions in emergency situations (Singh & Kaunert, 2024; Allam et al., 2024). Moreover, IoT integration supports the expansion of telemedicine and the accessibility of healthcare for patients unable to visit physical facilities regularly (Pandey & Pandey, 2022; Naqvi et al., 2023). In this context, smart hospitals not only embody technological innovation but also reflect the pressing need to expand healthcare accessibility and resilience in a globalized world.

Recent evidence indicates that the adoption of IoT technologies in hospitals has been closely linked to improvements in operational efficiency and patient safety. By minimizing manual errors and streamlining workflows, IoT systems reduce risks such as patient-drug mismatches and enhance medication safety protocols (Wang, 2025; Li et al., 2024). Smart systems further improve hospital operations by optimizing resource allocation, ensuring effective facility management, and enriching the overall patient experience (Kymap et al., 2025; Junaid et al., 2022). This transition to IoT-enabled healthcare systems exemplifies a move from reactive to proactive healthcare, wherein predictive insights and real-time data enable hospitals to preemptively address medical and operational challenges (Ksibi et al., 2023; Kaur et al., 2020). As such, the adoption of smart hospitals represents not just a technological shift but also a cultural change in the philosophy of healthcare delivery.

The integration of emerging technologies alongside IoT further enhances the promise of smart hospitals. Artificial intelligence (AI), machine learning (ML), and advanced analytics provide powerful tools for predictive diagnostics, personalized treatment, and clinical decision support (Govardanan et al., 2024; Gomes et al., 2020). These technologies, when combined with IoTenabled systems, allow for continuous patient monitoring, early detection of potential complications, and optimized clinical workflows. Predictive analytics, in particular, plays a crucial role in identifying patterns in patient data and enabling timely interventions that mitigate risks before they escalate into emergencies. Thus, the synergy of IoT, AI, and data analytics creates opportunities for improving not only patient care but also the efficiency and sustainability of healthcare systems.

Despite these advancements, the implementation of smart hospitals faces significant challenges that can hinder their effectiveness. One of the foremost challenges lies in ensuring cybersecurity and data privacy. The increased connectivity of IoT-enabled medical devices heightens the risk of unauthorized access, data breaches, and cyberattacks, raising concerns over the protection of sensitive patient information (Govardanan et al., 2024; Allam et al., 2024). The lack of standardized protocols for managing and securing medical data further exacerbates these vulnerabilities, making it imperative to develop robust governance frameworks (Кумар et al., 2025). As medical records and real-time monitoring data become increasingly digitized, hospitals must balance innovation with stringent safeguards to maintain patient trust and compliance with regulatory standards.

Interoperability presents another persistent challenge in the evolution of smart hospitals. Many hospitals continue to rely on legacy systems that operate in silos, impeding seamless integration with IoT and AI platforms (Li et al., 2024). This fragmentation restricts data flow, limits the potential for comprehensive analysis, and undermines the capacity of healthcare professionals to make informed clinical decisions. Furthermore, the successful adoption of smart hospitals requires substantial investment in infrastructure and the development of a skilled workforce capable of managing, analyzing, and interpreting complex datasets (Akbarzadeh et al., 2021). Without adequate training and resources, the benefits of digital transformation risk being unevenly distributed, particularly in healthcare systems with constrained budgets.

Measuring the impact of smart hospital technologies also remains an unresolved challenge. While numerous studies highlight the potential of IoT in improving patient monitoring and hospital management, establishing direct causal links between technological implementation and clinical or operational outcomes remains difficult (Zhang et al., 2024; Adibi et al., 2024). For instance, IoT has been shown to reduce emergency response times, but empirical evidence directly correlating these reductions to improved patient survival rates is still limited (Junaid et al., 2022). Similarly, while AI-driven analytics offer promising tools for predicting adverse events, rigorous evaluations of their accuracy, reliability, and real-world utility are still in progress. This ambiguity underscores the importance of developing standardized evaluation metrics and longitudinal methodologies to better capture the long-term effects of smart hospital adoption (Muthusamy, 2025; Kaur et al., 2020).

The literature also identifies a significant gap in comprehensive and systematic evaluations of the tangible benefits of IoT and AI in hospital contexts. Although research has documented a wide range of applications, there is a lack of consistent frameworks for assessing the outcomes of these technologies, particularly in terms of clinical effectiveness, patient satisfaction, and operational sustainability (Adibi et al., 2024; Khan et al., 2023). Current studies often focus on isolated case applications without addressing broader systemic implications. As a result, there is a need for studies that adopt a holistic perspective, integrating multiple dimensions of healthcare delivery and considering both short- and long-term impacts. Addressing these gaps is essential for building evidence-based policies and guiding future investment in digital health infrastructure.

The primary aim of this review is to synthesize existing literature on the development, challenges, and contributions of smart hospitals, with a particular focus on the integration of IoT, AI, and big data into healthcare delivery systems. This review seeks to analyze how these technologies improve operational efficiency, enhance patient safety, and transform hospital management practices. By evaluating the current state of knowledge, this study aims to identify critical factors influencing successful implementation and highlight areas requiring further research. Through this process, the review endeavors to provide insights for healthcare practitioners, policymakers, and researchers working to advance the digital transformation of healthcare systems.

The scope of this review encompasses both global and regional perspectives, recognizing the diversity of contexts in which smart hospitals are being implemented. In particular, differences between developed and developing countries are of central importance. Studies in developed countries frequently emphasize advanced integration of AI and big data analytics into hospital

management systems, reflecting robust infrastructures and regulatory environments (Minopoulos et al., 2022; Akbarzadeh et al., 2021). Conversely, research in developing countries highlights unique challenges such as limited infrastructure, resource constraints, and workforce shortages that hinder widespread adoption (Taryudi, 2025). These contextual differences provide valuable insights into the scalability and adaptability of smart hospital technologies, underscoring the importance of tailored strategies that address regional needs while advancing universal standards of care.

In summary, the introduction of smart hospitals marks a significant milestone in the digital transformation of healthcare, offering opportunities to enhance efficiency, safety, and patient outcomes. However, realizing this potential requires addressing persistent challenges, filling gaps in current knowledge, and tailoring strategies to diverse healthcare contexts. By analyzing both the opportunities and barriers associated with smart hospitals, this review contributes to the ongoing discourse on the intersection of healthcare and technology, providing a foundation for evidence-based advancements in this rapidly evolving field.

METHOD

The methodological framework of this review was designed to ensure a comprehensive and systematic examination of existing literature concerning smart hospitals and the integration of Internet of Things (IoT) technologies in healthcare. The overarching goal of this methodology was to identify, analyze, and synthesize peer-reviewed studies that explored the impact of IoT-enabled innovations on operational efficiency and patient safety within hospital environments. The methodological process was guided by established practices in systematic and narrative reviews, thereby ensuring transparency, replicability, and rigor.

The initial stage of this methodology involved the identification of relevant databases for conducting the literature search. Four principal academic sources were selected for their credibility, comprehensiveness, and relevance to the intersecting domains of healthcare and technology. Scopus was chosen due to its extensive coverage of peer-reviewed journals, conference proceedings, and technical reports, making it particularly useful for capturing the most recent and influential research outputs in the field. PubMed was included as a specialized biomedical database that offers access to medical research, clinical trials, and studies focused on health technology applications. Web of Science was incorporated for its robust citation indexing and multidisciplinary scope, which facilitated the identification of studies most frequently cited and therefore deemed impactful. Lastly, Google Scholar was employed as a supplementary search engine, enabling access to a wide array of academic outputs such as articles, theses, and books that may not be captured in traditional databases. The inclusion of these diverse sources ensured a broad and representative collection of literature relevant to smart hospitals and IoT integration.

A carefully designed search strategy was implemented to ensure the retrieval of pertinent studies. The search process employed a combination of key terms identified as central to the research focus. The primary keywords included "Smart Hospital," "IoT Healthcare," "Operational

Efficiency," "Patient Safety," and "Digital Transformation in Hospitals." Boolean operators such as AND, OR, and quotation marks were used strategically to refine the search results. For instance, the query "Smart Hospital" AND "IoT Healthcare" was applied to retrieve studies directly addressing the convergence of these two domains, while "Operational Efficiency" OR "Patient Safety" allowed for a broader inclusion of studies examining different yet complementary aspects of IoT implementation. The use of these structured search strings minimized irrelevant results and increased the precision of the literature retrieval process. Furthermore, database-specific filters such as publication year, document type, and subject category were applied to narrow the scope to studies published within the last decade, thereby ensuring the inclusion of contemporary and up-to-date findings.

To ensure the relevance and quality of the literature included in this review, clear inclusion and exclusion criteria were established prior to the search. The inclusion criteria required that studies be published in peer-reviewed journals or conference proceedings, written in English, and directly related to the implementation of IoT technologies in hospital or healthcare contexts. Studies were further required to examine at least one of the focal outcomes, namely operational efficiency or patient safety. Both empirical research and theoretical or conceptual papers were considered, as they contribute complementary insights to the understanding of smart hospitals. In contrast, exclusion criteria were applied to omit publications such as opinion pieces, non-peer-reviewed reports, or articles that focused solely on technical aspects of IoT without contextualizing their relevance to healthcare delivery. Duplicate records and studies not accessible in full text were also excluded to maintain consistency and quality in the evidence base.

The types of research included in this review reflected the diversity of approaches in the existing literature. Randomized controlled trials and clinical trials were included when they provided empirical evidence of IoT applications in hospital settings. Cohort studies and observational studies were considered for their ability to capture real-world implications of technology adoption. Case studies and pilot projects were also included, as they often provided detailed insights into specific contexts of implementation, particularly in emerging economies or smaller healthcare facilities. In addition, systematic and scoping reviews were incorporated when they synthesized findings across multiple studies, thereby providing a higher-level overview of trends and challenges in the field. The inclusion of this variety of study types ensured that the review captured both the breadth and depth of research available.

The process of screening and selecting relevant literature was conducted in multiple stages. First, titles and abstracts retrieved from database searches were reviewed to determine preliminary eligibility. This initial screening allowed for the removal of articles clearly unrelated to the research topic, such as those focusing on IoT in unrelated industries. The remaining studies were then subjected to full-text review, during which articles were carefully assessed against the inclusion and exclusion criteria. At this stage, particular attention was paid to the research objectives, methodologies, and reported outcomes of each study. Discrepancies in selection were resolved through iterative discussion and re-examination of the criteria, thereby reducing potential bias in the selection process.

Following the selection process, the included studies underwent a critical appraisal to evaluate their methodological rigor, relevance, and contribution to the research questions. Criteria such as study design, sample size, validity of measurements, and transparency of reporting were considered in this appraisal. Although the review encompassed multiple study types, all studies were evaluated according to standards of academic integrity and scientific soundness. For instance, randomized controlled trials were examined for proper randomization and blinding procedures, while observational studies were assessed for potential biases and limitations in data collection. Conceptual and theoretical studies were evaluated based on the clarity and coherence of their arguments, as well as the extent to which they engaged with existing literature.

The final body of literature selected for this review reflects a balanced collection of empirical and conceptual studies across various geographic and institutional contexts. Studies from developed nations often emphasized the integration of advanced technologies such as AI-driven predictive analytics and blockchain-enabled security systems, highlighting the benefits of robust digital infrastructures. Conversely, research from developing countries provided valuable insights into challenges such as limited resources, inadequate infrastructure, and workforce shortages that complicate the adoption of smart hospital technologies. This diversity of perspectives enriched the review by illuminating both global trends and context-specific challenges in the implementation of IoT-enabled healthcare systems.

In synthesizing the selected literature, thematic analysis was employed to organize findings into coherent categories aligned with the research objectives. Themes such as operational efficiency, patient safety, interoperability, cybersecurity, and organizational readiness emerged as focal areas. Each theme was analyzed by comparing and contrasting evidence from multiple studies, thereby identifying patterns, consistencies, and divergences in the literature. The synthesis process also allowed for the identification of gaps in existing research, such as the lack of longitudinal studies measuring the long-term impacts of IoT adoption on patient outcomes. This thematic approach ensured that the findings of the review were not only descriptive but also analytical, providing insights into underlying mechanisms and broader implications.

In conclusion, the methodology of this review was characterized by a structured and transparent approach to literature identification, selection, and synthesis. By leveraging multiple academic databases, employing well-defined search strategies, and applying rigorous inclusion and exclusion criteria, the review assembled a robust body of evidence on the role of IoT in smart hospitals. The inclusion of diverse study types and geographic perspectives further enriched the analysis, allowing for a comprehensive understanding of the opportunities and challenges associated with IoT integration in healthcare. This methodological rigor provides a solid foundation for the subsequent presentation of results and discussion, ensuring that the conclusions drawn are grounded in a credible and systematically curated body of knowledge.

RESULT AND DISCUSSION

The findings of this narrative review are organized according to the four central themes that emerged from the literature: operational efficiency, patient safety, supporting technologies, and implementation challenges. Each theme synthesizes empirical evidence and conceptual insights to

provide a comprehensive understanding of the impact of IoT integration within smart hospital environments. Where appropriate, comparisons across different geographic regions are highlighted to offer a global perspective on the implementation and outcomes of smart hospitals.

Operational efficiency has consistently been identified as one of the most significant benefits of IoT integration in healthcare management. Empirical studies demonstrate that IoT-enabled systems contribute to enhanced efficiency across hospital operations, particularly in supply chain management and resource allocation. Li et al. (2024) reported that integrated, data-driven approaches enabled improved coordination across hospital facility management systems, reducing downtime and maximizing resource utilization. Similarly, Wang (2025) found that IoT-based inventory and logistics systems minimized waste, reduced costs, and maintained smoother supply flows, which are essential for sustaining efficient healthcare delivery. These findings confirm the premise that IoT can reduce operational redundancies and improve hospital performance.

The literature further reveals marked differences between developed and developing countries in achieving operational efficiency through IoT integration. Research by Kumar et al. (2025) highlighted that hospitals in developing countries often face systemic barriers, including limited infrastructure, inadequate human resources, and insufficient policy support for digital transformation. These challenges limit the extent to which IoT technologies can be effectively implemented. In contrast, Niu and Zhao (2025) observed that hospitals in developed nations with robust digital infrastructures and strong regulatory frameworks were able to integrate IoT more seamlessly, achieving measurable improvements in workflow efficiency and resource management. The divergence across regions underscores the importance of contextualizing IoT adoption within local healthcare systems, as infrastructural readiness and policy environments directly affect outcomes.

Patient safety represents another crucial dimension where IoT and AI integration has demonstrated tangible benefits. Studies highlight the ability of IoT-based systems to monitor vital signs in real time, alerting healthcare professionals to potential complications before they escalate. Junaid et al. (2022) demonstrated that continuous patient monitoring using IoT devices significantly improved early detection of critical events, thereby reducing adverse health outcomes. Furthermore, AI-driven analysis of patient data has been shown to detect patterns that help reduce medication errors and procedural mistakes, enhancing the safety and reliability of clinical care (Pandey & Pandey, 2022).

Comparative research across global contexts illustrates that the impact of IoT on patient safety varies according to the level of adoption and the availability of supportive infrastructure. In Europe, widespread deployment of IoT monitoring technologies has been associated with measurable reductions in medical errors and higher levels of patient satisfaction (Taryudi, 2025). Conversely, Niu and Zhao (2025) note that in many developing countries, the adoption of IoT systems remains largely at the pilot stage, constrained by inadequate funding, technical infrastructure, and training resources. As a result, while pilot projects indicate potential improvements in safety outcomes, the scalability of such initiatives remains limited. These differences underscore a critical need for international collaboration to ensure equitable access to IoT-enabled safety innovations.

The role of supporting technologies such as AI, big data, blockchain, and 5G in advancing smart hospitals is another prominent theme in the literature. Adibi et al. (2024) and Govardanan et al. (2024) both highlight how AI and big data analytics facilitate more efficient data processing, supporting improved clinical and operational decision-making. These technologies allow hospitals to predict patient needs, manage workloads, and allocate resources in real time, thereby optimizing both safety and efficiency. Blockchain has emerged as a particularly significant technology in the context of health data management, enhancing transparency and ensuring secure, tamper-proof records (Allam et al., 2024). Such features are crucial in maintaining trust in digital healthcare systems and in addressing the growing concerns surrounding data integrity.

Adoption patterns for these supporting technologies reveal stark regional disparities. Salem et al. (2022) and Kumar et al. (2025) document that in advanced economies such as the United States and the European Union, rapid deployment of 5G networks and blockchain-based systems has accelerated the integration of smart hospital infrastructures. These regions benefit from higher levels of financial investment, regulatory alignment, and technological expertise, enabling them to implement sophisticated solutions at scale. In contrast, developing countries often lack the necessary resources to adopt these technologies comprehensively, limiting their ability to fully realize the benefits of smart hospital systems. These disparities highlight a pressing need for targeted investment and policy support to bridge the global digital divide in healthcare.

Despite the clear potential of smart hospitals, the literature consistently identifies significant challenges to implementation. Technical barriers such as interoperability and data security are among the most frequently cited concerns. Akbarzadeh et al. (2021) emphasize that incompatibility between disparate hospital systems often hampers the effective exchange of data, undermining the seamless integration that IoT promises. Similarly, Almotairi (2022) identifies persistent vulnerabilities in the collection and storage of sensitive patient information, raising risks of data breaches and unauthorized access. These findings highlight the tension between innovation and the need for robust safeguards in digital healthcare systems.

Regional comparisons also reveal variations in the types of challenges faced by different healthcare systems. Dwivedi and Singha (2021) and Bellavista et al. (2021) report that in developing countries, infrastructural limitations, shortages of skilled human resources, and financial constraints constitute the primary barriers to IoT adoption. By contrast, in developed countries, where infrastructures are more advanced, challenges are more likely to revolve around data regulation, ethical considerations, and patient privacy (Ksibi et al., 2023). Kumar et al. (2025) further stress that even in technologically advanced contexts, the complexity of integrating diverse systems across multiple hospital departments remains a major obstacle. These findings suggest that while the challenges differ, no healthcare system is entirely free from barriers to implementing IoT effectively.

Taken together, the results of this review highlight both the promise and the limitations of IoT-enabled smart hospitals. Evidence consistently shows that IoT integration enhances operational efficiency by reducing costs, streamlining workflows, and improving resource utilization. It also demonstrates significant contributions to patient safety through real-time monitoring, predictive analytics, and reduced error rates. Supporting technologies such as AI, big data, blockchain, and 5G play a pivotal role in reinforcing these benefits, though their adoption is uneven across regions.

At the same time, persistent challenges, including data security, interoperability, and infrastructural disparities, continue to constrain the widespread realization of smart hospital systems.

The comparative perspective offered by the literature provides valuable insights into the global landscape of smart hospital adoption. Developed countries are positioned to lead in implementing advanced solutions, while developing countries face systemic barriers that limit scalability and sustainability. Nevertheless, pilot programs in resource-constrained settings demonstrate that even limited adoption of IoT technologies can yield meaningful improvements in patient outcomes and hospital operations. As such, the global discourse on smart hospitals must consider not only the technological potential but also the contextual realities that shape implementation and outcomes. These findings establish a foundation for deeper discussion on the systemic, regulatory, and ethical implications of smart hospital adoption, which are further explored in subsequent sections of this review.

The analysis of existing literature on smart hospitals and IoT integration underscores the profound influence of systemic factors in shaping adoption, effectiveness, and sustainability across different contexts. Systemic conditions such as healthcare policy, regulatory frameworks, and workforce readiness play pivotal roles in determining how well IoT technologies are integrated into hospital infrastructures. Evidence indicates that developed countries benefit from well-defined regulations, strong institutional frameworks, and substantial financial investments that collectively enable rapid adoption of smart hospital models. For instance, Pati et al. (2022) describe how nations like Germany and Sweden successfully advanced digital healthcare transformation through comprehensive policy support and clear regulatory environments. These structural enablers allowed hospitals to focus on outcomes-driven care by integrating smart technologies across clinical and administrative workflows. Conversely, Adibi et al. (2024) point out that in many developing countries, policy inertia and budgetary limitations significantly constrain implementation. The absence of supportive regulations and the lack of financial resources delay digital innovation and impede hospitals from realizing the benefits of IoT adoption. These findings highlight that systemic disparities, more than technological availability, often determine the trajectory of digital healthcare transformation.

In addition to regulatory and financial structures, workforce preparedness emerges as a critical determinant of smart hospital success. Salem et al. (2022) stress the importance of digital literacy and continuous training for healthcare workers, noting that technical expertise is essential for operating IoT-enabled devices, analyzing data, and ensuring accurate interpretation in clinical settings. Without adequate training, IoT systems risk being underutilized or misapplied, reducing their intended benefits. The literature thus suggests that capacity-building initiatives, such as targeted training programs and interdisciplinary education, are necessary complements to technological investment. Countries that integrate workforce development with technological advancement are more likely to sustain smart hospital initiatives, while those that neglect this dimension face gaps between technological capability and practical implementation.

Security, privacy, and ethical concerns form another crucial area of discussion, with the literature identifying them as persistent barriers to widespread adoption. As IoT technologies expand connectivity among medical devices, patient records, and hospital systems, the risk of unauthorized access and data breaches intensifies. Govardanan et al. (2024) argue that protecting sensitive

patient data requires a multilayered approach involving both technical safeguards and regulatory oversight. Blockchain technology, highlighted by Allam et al. (2024), has been proposed as a viable solution for ensuring transparency, immutability, and patient control over health data. Blockchain-based systems can provide tamper-proof records and decentralized security, offering stronger safeguards against breaches than traditional systems. Yet, despite its promise, the adoption of blockchain in healthcare faces challenges of scalability, cost, and integration with existing hospital infrastructures.

Ethical considerations extend beyond technical safeguards and encompass broader questions of consent, accountability, and equity. Pandey and Pandey (2022) emphasize the importance of ethical frameworks that define clear boundaries for data usage, ensuring that IoT-enabled health systems do not infringe on patient autonomy or expose individuals to exploitation. The development of such frameworks requires collaboration among multiple stakeholders, including governments, healthcare providers, and civil society. Moreover, transparency in communication with patients about data collection, usage, and protection remains a cornerstone of building trust in digital healthcare systems. Without such assurances, the widespread adoption of IoT technologies risks resistance from patients and healthcare professionals who may perceive these innovations as intrusive or unreliable.

The literature also points to collaborative governance as an essential strategy for addressing challenges in security, privacy, and ethics. Allam et al. (2024) and Govardanan et al. (2024) underscore the need for multi-stakeholder coalitions that bring together governments, private technology developers, healthcare institutions, and patient advocacy groups. Such collaborations can establish common standards for data protection, interoperability, and ethical practices. Additionally, international coordination may be necessary to align regulations across borders, particularly as smart hospital technologies often involve cross-national data flows. By pooling expertise and resources, collaborative governance frameworks can create more robust protections and accelerate the safe integration of IoT into healthcare systems.

Despite the considerable progress highlighted in the results, significant limitations in the existing research base constrain our understanding of smart hospital implementation. A key limitation, as Zhang et al. (2024) note, lies in the predominance of cross-sectional studies, which provide snapshots of technological impact but fail to capture longitudinal outcomes. Such designs cannot fully assess the long-term implications of IoT integration for clinical effectiveness, cost efficiency, or patient satisfaction. The absence of longitudinal studies impedes the ability to make evidence-based predictions about sustainability and scalability. Patel (2024) further argues that there is insufficient comparative research between developed and developing countries, resulting in generalized findings that do not adequately reflect the diversity of healthcare contexts. Without targeted research into localized conditions, recommendations may lack relevance for countries with unique systemic, cultural, or infrastructural challenges.

The literature also identifies a need for future research to engage more deeply with big data analytics and artificial intelligence within the smart hospital ecosystem. Dwivedi and Singha (2021) highlight the potential of big data in supporting real-time decision-making, predictive modeling, and resource optimization. Yet empirical studies integrating big data with clinical decision processes remain scarce, limiting the ability to evaluate its practical contributions to hospital

performance. Thirugnanam et al. (2023) suggest that further investigation is required into AI's role in enhancing diagnostic accuracy, treatment personalization, and operational resilience. Given that AI systems often rely on training datasets that may not adequately represent diverse patient populations, research must also address issues of bias and inclusivity to ensure equitable healthcare outcomes.

In analyzing these limitations, it becomes clear that the future of smart hospital research must embrace more robust methodologies, interdisciplinary perspectives, and context-sensitive frameworks. Longitudinal and comparative studies, particularly those spanning multiple healthcare systems, would enrich understanding of how systemic factors shape technological outcomes. Moreover, exploring intersections between emerging technologies—such as AI, blockchain, and 5G—and existing hospital workflows could provide actionable insights into integration strategies. Such research not only strengthens the evidence base but also informs policymakers and practitioners in developing nuanced approaches to healthcare digitalization that address both opportunities and challenges.

CONCLUSION

This narrative review highlights the transformative potential of smart hospitals driven by the integration of the Internet of Things, artificial intelligence, big data, and other emerging technologies. The findings indicate that IoT-enabled systems significantly improve operational efficiency through better resource allocation, streamlined workflows, and enhanced supply chain management, while also contributing to patient safety by enabling real-time monitoring, predictive analytics, and reduced medical errors. Supporting technologies such as blockchain and 5G further strengthen these benefits by improving data security, transparency, and connectivity. However, challenges remain, particularly regarding interoperability, cybersecurity, and systemic disparities between developed and developing healthcare systems. The discussion emphasizes that systemic factors—such as supportive policies, regulatory clarity, and workforce readiness—play a decisive role in shaping successful adoption. Addressing these issues requires comprehensive strategies that combine technological investment with governance reforms, ethical frameworks, and capacitybuilding initiatives. Future research should prioritize longitudinal and comparative studies to better capture long-term outcomes and contextual differences. Moreover, deeper engagement with AI and big data applications is necessary to refine predictive healthcare and ensure equitable benefits across populations. Overall, advancing smart hospitals demands a coordinated effort that balances innovation with safeguards, positioning IoT integration as a core strategy for building efficient, safe, and patient-centered healthcare systems.

REFERENCE

(2025). The effect of smart bed on pressure ulcer prevention among patients with stroke in west java, indonesia. *The Malaysian Journal of Nursing*, 16(02), 30-38. https://doi.org/10.31674/mjn.2025.v16isupp2.004

- Adibi, S., Rajabifard, A., Shojaei, D., & Wickramasinghe, N. (2024). Enhancing healthcare through sensor-enabled digital twins in smart environments: a comprehensive analysis. *Sensors*, 24(9), 2793. https://doi.org/10.3390/s24092793
- Akbarzadeh, O., Baradaran, M., & Khosravi, M. (2021). IoT-based smart management of healthcare services in hospital buildings during COVID-19 and future pandemics. *Wireless Communications and Mobile Computing*, 2021(1). https://doi.org/10.1155/2021/5533161
- Allam, A., Gomaa, I., Zayed, H., & Taha, M. (2024). IoT-based eHealth using blockchain technology: a survey. *Cluster Computing*, 27(6), 7083-7110. https://doi.org/10.1007/s10586-024-04357-v
- Almotairi, K. (2022). Application of internet of things in healthcare domain. *Journal of Umm Al-Qura University for Engineering and Architecture*, 14(1), 1-12. https://doi.org/10.1007/s43995-022-00008-8
- Bellavista, P., Torello, M., Corradi, A., & Foschini, L. (2021). Smart management of healthcare professionals involved in COVID-19 contrast with swaps. *Frontiers in Sustainable Cities*, 3. https://doi.org/10.3389/frsc.2021.638743
- Dwivedi, P., & Singha, M. (2021). IoT based wearable healthcare system: post COVID-19. In *Proceedings* (pp. 305-321). https://doi.org/10.1007/978-3-030-66490-9_13
- Gomes, J., Rodrigues, J., Rabêlo, R., Tanwar, S., Al-Muhtadi, J., & Kozlov, S. (2020). A novel internet of things-based plug-and-play multigas sensor for environmental monitoring. *Transactions on Emerging Telecommunications Technologies, 32*(6). https://doi.org/10.1002/ett.3967
- Govardanan, C., Murugan, R., Yenduri, G., Raj, G., Bhulakshmi, D., Kandati, D., ... & Jhaveri, R. (2024). The amalgamation of federated learning and explainable artificial intelligence for the internet of medical things: a review. *Recent Advances in Computer Science and Communications*, 17(4). https://doi.org/10.2174/0126662558266152231128060222
- Junaid, S., Imam, A., Shuaibu, A., Basri, S., Kumar, G., Surakat, Y., ... & Alazzawi, A. (2022). Artificial intelligence, sensors and vital health signs: a review. *Applied Sciences*, 12(22), 11475. https://doi.org/10.3390/app122211475
- Kaur, R., Pasricha, R., & Kaur, B. (2020). A study of wireless body area networks and its routing protocols for healthcare environment. *Recent Advances in Electrical & Electronic Engineering*, 13(2), 136-152. https://doi.org/10.2174/2352096512666190305152857
- Khan, M., Alhakami, H., Alhakami, W., Shvetsov, A., & Ullah, I. (2023). A smart card-based two-factor mutual authentication scheme for efficient deployment of an IoT-based telecare medical information system. *Sensors*, 23(12), 5419. https://doi.org/10.3390/s23125419
- Ksibi, A., Mhamdi, H., Ayadi, M., Almuqren, L., Alqahtani, M., Ansari, M., ... & Sakli, H. (2023). Secure and fast emergency road healthcare service based on blockchain technology for smart cities. *Sustainability*, *15*(7), 5748. https://doi.org/10.3390/su15075748

- Li, L., Jiang, S., Yuan, J., Zhang, L., Xu, X., Wang, J., ... & Jin, X. (2024). From data silos to seamless integration and coordination: a data-asset centric approach to smart hospital facility management. *Engineering Construction & Architectural Management*. https://doi.org/10.1108/ecam-03-2024-0274
- Minopoulos, G., Memos, V., Stergiou, C., Stergiou, K., Plageras, A., Koidou, M., ... & Psannis, K. (2022). Exploitation of emerging technologies and advanced networks for a smart healthcare system. *Applied Sciences*, 12(12), 5859. https://doi.org/10.3390/app12125859
- Muthusamy, P. (2025). Smart MedDB Chain—an intelligent approach for data sharing in medical systems. Innovation and Emerging Technologies, 12. https://doi.org/10.1142/s2737599425400018
- Naqvi, M., Iqbal, M., Shahzad, S., Ashraf, M., Alsubhi, K., & Aljahdali, H. (2023). Ontological model for cohesive smart health services management. *Computers Materials & Continua*, 74(2), 3679-3695. https://doi.org/10.32604/cmc.2023.030340
- Niu, M., & Zhao, Z. (2025). Research and exploration on intelligent management of medical waste: a case report. https://doi.org/10.3233/faia250188
- Pandey, S., & Pandey, S. (2022). IoT and healthcare. (pp. 1-16). https://doi.org/10.4018/978-1-6684-3533-5.ch001
- Patel, W. (2024). Integrating IoT and machine learning for advanced breast cancer detection: a secure framework for enhanced diagnostic accuracy. *PMJ*, 35(1), 63-76. https://doi.org/10.52783/pmj.v35.i1.2045
- Pati, A., Parhi, M., Pattanayak, B., Singh, D., Samanta, D., Banerjee, A., ... & Dalapati, G. (2022). Diagnose diabetic mellitus illness based on IoT smart architecture. *Wireless Communications and Mobile Computing*, 2022, 1-20. https://doi.org/10.1155/2022/7268571
- Salem, M., Elkaseer, A., El-Maddah, I., Youssef, K., Scholz, S., & Mohamed, H. (2022). Non-invasive data acquisition and IoT solution for human vital signs monitoring: applications, limitations and future prospects. *Sensors*, 22(17), 6625. https://doi.org/10.3390/s22176625
- Singh, B., & Kaunert, C. (2024). Leveraging IoT for patient monitoring and smart healthcare. (pp. 27-46). https://doi.org/10.4018/979-8-3693-7225-8.ch002
- Thirugnanam, T., Galety, M., Pradhan, M., Agrawal, R., Shobanadevi, A., Almufti, S., ... & Kumar, R. (2023). PIRAP: medical cancer rehabilitation healthcare center data maintenance based on IoT-based deep federated collaborative learning. *International Journal of Cooperative Information Systems*, 33(01). https://doi.org/10.1142/s0218843023500053
- Wang, P. (2025). From complexity to efficiency: context-aware smart infusion pump systems with enhanced medication safety and bidirectional interoperability. https://doi.org/10.3233/shti251182

The Role of IoT and Emerging Technologies in Shaping Smart Hospitals

Anas, Alchamdani, Syam, Arwan, and Firmansyah

- Zhang, L., Yang, G., Li, J., & Liang, J. (2024). A novel medical cyber-physical systems based on digital twin-driven platform. *International Journal of High Speed Electronics and Systems*. https://doi.org/10.1142/s0129156425401299
- Кумар, A., Masud, M., Alsharif, M., Gaur, N., & Nanthaamornphong, A. (2025). Integrating 6G technology in smart hospitals: challenges and opportunities for enhanced healthcare services. *Frontiers in Medicine*, 12. https://doi.org/10.3389/fmed.2025.1534551