Medicor: Journal of Health Informatics and Health Policy

E-ISSN: 3030-9166

Volume. 2, Issue 2, April 2024

Page No: 87-100

Digital Health Innovation and Public Trust in Pandemic Preparedness

Multy Syaddam Nirwan¹, Arwan², Sadli Syam³, Firmansyah⁴, Muhammad Sabri Syahrir⁵, Muhammad Aji Satria⁶, Rendhar Putri Hilintang⁷

1234567 Universitas Tadulako, Indonesia

Correspondent: multynirwan@gmail.com1

Received: February 25, 2024

Accepted : April 14, 2024

Published : April 30, 2024

Citation: Nirwan, M, S., Arwan., Syam, S., Firmansyah., Syahrir, M, S., Satria, M, A., Hilintang, R, P. (2024). Digital Health Innovation and Public Trust in Pandemic Preparedness. Medicor: Journal of Health Informatics and Health Policy, 2(2), 87-100.

ABSTRACT: This narrative review examines the role of digital health technologies and big data analytics in pandemic preparedness, with particular reference to COVID-19. The objective was to synthesize evidence on how technological innovations supported healthcare and education during crises and to identify barriers that limit their effectiveness. Literature searches were conducted across PubMed, Scopus, Web of Science, and Google Scholar, focusing on empirical studies, case analyses, and systematic reviews related to telehealth, artificial intelligence, digital dashboards, and citizen science initiatives. The review found that digital innovations enabled remote consultations, predictive modeling, and real-time monitoring, which reduced pressure on health systems and informed public policy. Evidence highlighted the value of visual analytics and communitydriven data in filling information gaps. However, infrastructural limitations, weak governance, and low public trust constrained adoption, particularly in low- and middleincome countries. Comparative analyses showed that countries with strong infrastructures and transparent policies, such as Taiwan and South Korea, achieved more effective outcomes than regions with limited technological readiness. These findings indicate that digital health tools are powerful enablers of crisis response but insufficient in isolation. Sustainable integration requires investment in infrastructure, transparent capacity-building, communication, participatory approaches. Embedding these reforms into health systems will be critical to ensure equitable access, strengthen resilience, and optimize the benefits of technological innovation for future pandemic preparednessof technological innovations in global health preparedness.

Keywords: Digital Health Technologies, Big Data Analytics, Telehealth, Artificial Intelligence In Healthcare, Pandemic Preparedness, Public Health Resilience.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

The interplay between technology, education, and healthcare has gained significant attention in recent years, as scholars and policymakers increasingly recognize its transformative potential for

global development. Educational technologies have emerged as essential drivers for supporting effective learning across formal and non-formal institutions, particularly within online and collaborative environments (Bond et al., 2018). This trend aligns with the Horizon Report, which projected the integration of artificial intelligence (AI) into higher education, framing AI not as a passing trend but as a core component of future educational systems (Hinojo-Lucena et al., 2019). In the healthcare sector, the challenges posed by corruption have underscored the importance of collective action, highlighting the role of academics and stakeholders in strengthening transparency and accountability in global health research and practice (García, 2019). These parallel developments illustrate the growing salience of technological solutions in addressing both educational and healthcare challenges.

Over the past five years, bibliometric analyses of scholarly databases such as Scopus and Web of Science have confirmed a marked increase in publications addressing the integration of technology into education. Studies in artificial intelligence in education (AIED) have shown rapid growth, with a bibliometric review identifying 457 documents published in the past decade, emphasizing the urgency of understanding the trajectory and implications of this trend (Praham et al., 2022). In parallel, the domain of digital health technologies has expanded significantly, with research emphasizing how digitalization supports professional health education and clinical training (Car et al., 2019). The global health dimension of education is also reflected in studies examining the impact of international health programs in medical curricula, which have been shown to enhance cultural awareness and research competencies among students (Lu et al., 2018; Slifko et al., 2021). Taken together, these developments signal an accelerating convergence between education and healthcare through technology-enabled innovation.

Recent bibliometric analyses of educational technologies reveal that research on technology acceptance, social network-based learning, and satisfaction in e-learning has become prominent within the past five years (Özyurt & Ayaz, 2022; Ritzhaupt et al., 2022). This growing body of literature emphasizes interdisciplinary collaboration as a key factor in leveraging modern technology to improve outcomes in both health and education (Shi et al., 2022). Such evidence demonstrates that the digital transformation of learning and healthcare is not merely a technological shift but also a profound social change that shapes how individuals acquire knowledge and interact in globalized contexts.

Empirical evidence further reinforces the relevance of this research agenda. For instance, studies in Ghana revealed that public health policies designed to promote community participation often failed due to weak engagement between healthcare workers and community leaders, leading to ineffective resource mobilization (Car et al., 2019). Similarly, research on health policy implementation in Peru highlighted the urgent need for systemic policy reform to promote equitable access to health screenings and reduce inequalities in healthcare outcomes (Thoumi et al., 2021). These examples underscore how the absence of robust implementation strategies and policy-practice alignment undermines the potential benefits of technological and policy innovations.

The healthcare sector also faces significant knowledge gaps. A study in Rwanda on fungal infections highlighted the lack of adequate understanding of their distribution and the associated health and social impacts, underscoring the need for national capacity-building in diagnostics and public health interventions (Muvunyi et al., 2024). Beyond clinical knowledge, many scholars point to the insufficient capacity of policymakers to effectively translate research findings into health policies. Ellen et al. (2018) and Mapulanga et al. (2019) emphasize the persistent disconnect between academic research outputs and policy decisions, a gap that weakens the effectiveness of health interventions. These insights illustrate how systemic challenges in governance, knowledge translation, and evidence integration hinder the effective deployment of technological innovations.

Further evaluations of healthcare governance, particularly in sub-Saharan Africa, reveal deficiencies in policymakers' skills to incorporate research-based evidence into policy frameworks (Derkyi-Kwarteng et al., 2021). This issue underscores the critical role of accessible and high-quality information as a determinant of effective health planning and policy execution. Without a structured pathway to bridge evidence and policy, even the most promising digital innovations risk being underutilized or misapplied. Consequently, there is a pressing need for scholarly reviews that synthesize these shortcomings, highlight lessons learned, and propose more effective models for linking research with policy in health and education.

The literature also calls for improved frameworks to enhance collaboration between researchers and policymakers, emphasizing the importance of interdisciplinary dialogue and a deeper understanding of policy processes (O'Brien et al., 2020). Such frameworks could enable more holistic approaches that integrate technological innovation with social, cultural, and institutional realities, ultimately strengthening both education and healthcare systems. Addressing these gaps requires not only technological advancement but also deliberate efforts to reform governance structures and strengthen capacity at multiple levels.

This review, therefore, seeks to address these knowledge gaps by analyzing the role of technology in shaping outcomes across education and healthcare. Specifically, the review aims to (i) assess the state of research on the integration of digital technologies in higher education and healthcare training; (ii) identify systemic barriers that hinder effective policy and practice implementation; and (iii) highlight opportunities for strengthening evidence-based decision-making through interdisciplinary collaboration. In doing so, the review contributes to the broader effort of building more resilient educational and healthcare systems that can respond effectively to global challenges.

The scope of this review is defined by two interrelated domains: the integration of technology in higher education, and the use of digital tools in healthcare systems, with particular attention to contexts in both developed and developing regions. The geographic scope encompasses examples from sub-Saharan Africa, Latin America, and Asia-Pacific, where the challenges of policy-practice gaps, resource limitations, and inequities are especially pronounced. At the same time, insights from high-income countries are considered to provide a comparative perspective and highlight transferable lessons. By situating the analysis across diverse contexts, this review seeks to offer a comprehensive understanding of how technology-mediated innovation can be harnessed to improve outcomes in education and healthcare, while also acknowledging the contextual limitations and variations that shape its implementation.

METHOD

The methodology of this review was designed to ensure comprehensiveness, transparency, and reproducibility in synthesizing relevant literature at the intersection of healthcare, education, and technology. This section details the databases consulted, the keywords employed, the inclusion and exclusion criteria, the types of studies considered, and the overall process of screening and evaluation. The methodological approach builds upon established practices in systematic and narrative reviews to capture a wide breadth of evidence while maintaining a critical lens on study quality and relevance.

The first step in conducting the review was to identify the most authoritative and comprehensive databases that could provide access to peer-reviewed academic work in healthcare, education, and technology. Four primary databases were selected: PubMed, Scopus, Web of Science, and Google Scholar. PubMed was prioritized for its extensive coverage of biomedical and health-related literature, including clinical studies and systematic reviews that often underpin evidence-based healthcare practices. Scopus was chosen for its multidisciplinary scope and strong indexing of both health sciences and educational research, offering access to conference proceedings and book chapters in addition to journal articles. Web of Science was included for its rigorous indexing standards and coverage of highly cited journals across disciplines, making it particularly useful for identifying influential research. Google Scholar, while less selective in indexing, was incorporated to ensure that gray literature, preprints, and emerging research not yet formally published could also be considered. This approach is consistent with recommendations in prior reviews, such as those by Car et al. (2018) and SeyedAlinaghi et al. (2024), which emphasize the value of using multiple databases to enhance comprehensiveness and minimize the risk of omitting relevant studies.

Keyword selection was an essential methodological step to ensure the breadth and depth of the search strategy. To capture the interdisciplinary nature of the review, keywords were chosen to represent core concepts in digital health, medical education, and technological innovation. Key search terms included "digital health education," "telemedicine," "telehealth," "health technology assessment," "e-learning," and "medical training." Synonyms and related terms were incorporated to broaden the search scope, with particular attention paid to MeSH (Medical Subject Headings) terms in PubMed. For instance, studies that focused on nursing education often used combinations of "e-learning," "nursing education," and "digital technology" (Arian, 2025), while reviews on telehealth employed terms such as "telehealth applications" and "endocrinology" to narrow the focus to specialized healthcare domains (SeyedAlinaghi et al., 2024). The inclusion of multiple synonyms and contextual variations was necessary to ensure that potentially relevant studies were not excluded due to variations in terminology. The deliberate construction of keyword sets also reflected the lessons of bibliometric research, which shows how different indexing systems capture divergent terminologies, necessitating a flexible yet systematic approach to search design.

The formulation of inclusion and exclusion criteria constituted another critical step in shaping the body of literature that would form the basis of analysis. Studies were included if they met the following conditions: (i) published in peer-reviewed journals or conference proceedings between 2010 and June 2024; (ii) written in English to ensure accessibility and comparability across research contexts; (iii) explicitly addressed the role of technology in healthcare or education, with a focus on either digital learning platforms, telemedicine, or broader applications of digital health technologies; and (iv) provided empirical evidence, whether quantitative or qualitative, on outcomes related to educational or healthcare practices. Excluded from the review were opinion pieces, editorials, or commentaries without empirical support; studies not directly related to digital health or education; and articles focusing exclusively on technological innovations unrelated to human health or learning outcomes. This structured approach to inclusion and exclusion was designed to balance breadth with analytical rigor, ensuring that the resulting synthesis was both comprehensive and evidence-based.

The types of studies included in the review were intentionally diverse to reflect the interdisciplinary nature of the topic. Randomized controlled trials (RCTs), cohort studies, and case-control studies were prioritized for their methodological rigor and capacity to provide causal or correlational evidence. However, case studies, qualitative research, and mixed-methods designs were also included to capture contextual insights, user experiences, and institutional practices that cannot be fully conveyed by quantitative methods alone. Reviews and meta-analyses were considered valuable secondary sources, especially when they synthesized findings across multiple primary studies. This approach follows precedents established in prior systematic reviews, such as those by Sungkono et al. (2024), which emphasize the importance of methodological pluralism in capturing the complexity of education-health-technology intersections.

The process of literature selection proceeded in several stages. After the initial keyword search across databases, duplicate records were removed to avoid redundancy. Titles and abstracts were then screened independently to assess relevance against the inclusion and exclusion criteria. Articles deemed potentially relevant were retrieved in full text for detailed review. At this stage, methodological quality was assessed using criteria adapted from established appraisal tools, such as the Critical Appraisal Skills Programme (CASP) checklists, depending on the type of study. Studies with insufficient methodological detail, unclear outcomes, or poor alignment with the research focus were excluded. The final set of articles represented a curated selection that balanced methodological rigor, topical relevance, and diversity of perspectives.

To ensure objectivity and minimize bias, the screening process was conducted independently by two reviewers, with discrepancies resolved through discussion and, when necessary, consultation with a third reviewer. This process reflects best practices in systematic reviewing, where independent verification of decisions enhances transparency and reliability. In addition, a record of the selection process was maintained in the form of a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram, documenting the number of articles identified, screened, excluded, and included at each stage. This documentation provided a visual overview of the process and ensured alignment with internationally recognized reporting standards.

The evaluation of studies also involved thematic coding and categorization. Extracted data were organized into themes such as "digital health interventions in medical education," "telehealth implementation and outcomes," and "policy and governance challenges in integrating technology." These thematic categories allowed for the systematic comparison of findings across contexts and

study types, highlighting patterns as well as divergences. Quantitative results, such as measures of effectiveness or statistical significance, were recorded alongside qualitative insights, such as user perceptions or institutional barriers. This integrative approach to synthesis ensured that both numerical evidence and narrative findings were incorporated into the final analysis, thereby providing a holistic understanding of the topic.

Finally, the methodological approach acknowledged limitations inherent in literature reviews. These included potential publication bias, as studies with positive findings are more likely to be published and indexed, as well as the exclusion of non-English literature, which may have led to the omission of relevant regional perspectives. Furthermore, while Google Scholar was included to capture gray literature, the variability in indexing quality means that some studies may not have met the same standards of peer review as those identified in Scopus or Web of Science. Recognizing these limitations was crucial for contextualizing the findings and ensuring that conclusions were framed within a balanced understanding of the evidence base.

In summary, this methodology combined systematic database searches, carefully constructed keyword strategies, rigorous inclusion and exclusion criteria, and multi-stage screening and evaluation procedures to assemble a comprehensive body of literature. By incorporating both quantitative and qualitative research, as well as global perspectives, this approach provided a robust foundation for analyzing the intersection of healthcare, education, and technology. The careful documentation of processes, from keyword design to final study selection, reflects adherence to best practices in systematic reviewing, thereby ensuring the credibility and reproducibility of the study's findings.

RESULT AND DISCUSSION

The synthesis of literature identified several dominant themes that illuminate how technology and big data analytics have shaped public health responses during the COVID-19 pandemic and continue to inform preparedness for future crises. These themes revolve around the integration of digital health tools, the influence of specific contextual factors, and the divergent outcomes observed across global contexts. The findings reflect not only the growing centrality of digital innovation in public health interventions but also the persistent inequalities and systemic barriers that influence their effectiveness.

A consistent theme in the reviewed literature is the transformative role of digital technology and big data in supporting public health interventions during the COVID-19 pandemic. Gunasekeran et al. (2021) reported that telehealth applications and artificial intelligence tools played a pivotal role in addressing rapidly evolving healthcare demands. These technologies facilitated remote consultations, digital triage, and predictive analytics, thereby reducing the burden on overstretched healthcare systems. Li et al. (2020) emphasized the significance of human mobility data in monitoring and forecasting the spread of COVID-19, demonstrating how data-driven insights directly supported the design and implementation of control measures. The capacity to integrate diverse data sources allowed for the development of real-time monitoring platforms that informed both policymakers and the general public.

Empirical evidence substantiates the impact of these technological interventions. Katapally and Ibrahim (2023) documented how digital health dashboards provided actionable evidence for decision-makers during health crises, serving as essential tools for rapid response and resource allocation. By aggregating data on infection rates, healthcare capacity, and policy interventions, dashboards created an accessible interface for timely decision-making. Similarly, Ramvilas et al. (2021) showed that citizen science initiatives, which engaged communities in data collection on biodiversity and public health, filled crucial knowledge gaps in real-time monitoring. Such participatory approaches underscored the value of inclusive data ecosystems, where both institutional and community actors contribute to a comprehensive evidence base.

The literature further revealed that the successful implementation of digital health strategies was influenced by a range of specific factors, including government involvement, public trust, and accessibility of technology. Park and Wang (2022) demonstrated that government transparency in information dissemination, coupled with socioeconomic factors, shaped the effectiveness of communication during the pandemic. Public trust was repeatedly highlighted as a decisive variable; where trust in institutions was high, compliance with public health measures and adoption of digital tools were markedly stronger. Zhu (2022) explored the interplay between public emotions and preventive behaviors, illustrating how fear, anxiety, and hope influenced adherence to safety measures. These findings underscore the necessity of aligning technological interventions with the socio-emotional dynamics of affected populations.

Comparative perspectives reinforced the centrality of contextual factors in shaping outcomes. In Taiwan, proactive policies grounded in transparency and open communication contributed to effective containment of the virus (Wang et al., 2020). Government-led initiatives that integrated digital contact tracing and open data sharing were accompanied by high levels of public trust, resulting in stronger compliance with health directives. Conversely, in regions such as Sulawesi, limited access to digital infrastructure and restricted dissemination of information constrained the effectiveness of public health responses. The juxtaposition of these cases reveals how technological readiness and governance structures together determine the impact of digital innovations.

From a global perspective, the literature consistently highlighted striking variations in outcomes across countries and regions, attributable to differences in policy design, health infrastructure, and cultural practices. Taiwan's success in curbing COVID-19 was widely recognized as an outcome of its prior experience with SARS, which spurred investments in surveillance infrastructure and preparedness strategies (Wang et al., 2020). In contrast, low-resource settings in Africa and Southeast Asia encountered significant barriers, including inadequate testing capacity and limited uptake of telehealth technologies. Gunasekeran et al. (2021) emphasized that while digital health systems in developing countries often explored telehealth and digital platforms, challenges in adoption, experimentation, and scaling reduced their effectiveness. These disparities highlight the uneven distribution of technological capacity and the risks of widening inequities in global health.

The empirical record further demonstrates the role of big data in shaping pandemic responses across diverse national contexts. Li et al. (2020) found that countries with robust mobility datasets, such as South Korea, were able to design more responsive containment measures, in contrast to those with limited data infrastructures. These findings were corroborated by Gueguen et al. (2022), whose work in the Democratic Republic of Congo revealed both the opportunities and limitations of leveraging mobile operator data for pandemic decision-making. While mobile big data provided valuable insights into population movements, resource limitations constrained the capacity to translate data into effective policy interventions. The contrasting experiences of South Korea and the DRC highlight how the same technological resource—mobility data—can yield markedly different outcomes depending on institutional readiness and infrastructure.

Cross-national comparisons further illuminate the advantages of integrating automated and AI-based decision-making systems into public health responses. Countries with advanced infrastructures were able to implement AI-driven surveillance, predictive modeling, and automated contact tracing with greater speed and efficiency. These technologies enhanced the agility of responses and reduced the lag between detection and intervention. However, evidence suggests that in low- and middle-income countries, such approaches often encountered barriers related to data availability, privacy concerns, and technical expertise. The literature therefore underscores the importance of considering local capacity and governance conditions when evaluating the effectiveness of advanced digital interventions.

The evidence presented across these studies reinforces the conclusion that technology and big data serve as powerful enablers of public health interventions but are not sufficient in isolation. Their impact is mediated by contextual factors such as government transparency, public trust, and infrastructure readiness. Where these enabling conditions are absent, technological solutions alone cannot ensure effective pandemic response. Conversely, in contexts where trust, infrastructure, and governance align, digital tools significantly strengthen resilience and adaptability.

Taken together, the findings illustrate both the promise and the limitations of digital health innovations. The literature converges on the idea that future preparedness requires a holistic approach that integrates technological innovation with governance reform, equitable access to infrastructure, and strategies to build public trust. The global variation in outcomes underscores that best practices cannot simply be transferred across contexts but must be adapted to local conditions. This review thereby establishes a foundation for deeper analysis in the subsequent discussion, where the systemic barriers, policy implications, and pathways for sustainable innovation will be explored in greater detail.

The findings of this review demonstrate both convergence and divergence with existing literature on digital health technologies and public health interventions during the COVID-19 pandemic. Prior scholarship has consistently highlighted the role of digital tools in enabling healthcare delivery in the face of crisis, particularly through the adoption of telehealth and artificial intelligence systems (Gunasekeran et al., 2021). The present synthesis extends these insights by emphasizing the importance of visual analytic tools for population-level health monitoring, which provided a more dynamic and accessible interface for decision-making processes (Chishtie et al., 2020). These innovations suggest that digital health technologies should not be regarded merely as temporary stopgaps during emergencies but as enduring resources that can enhance long-term resilience and healthcare outcomes.

The analysis also underlines how systemic factors continue to shape the effectiveness of technological interventions. Weak health infrastructures remain a recurrent barrier in many low-and middle-income countries, limiting the capacity to implement sophisticated data-driven systems. Gueguen et al. (2022) observed that in the Democratic Republic of Congo, the absence

of reliable datasets constrained timely decision-making despite the availability of mobile operator data. This contrasts with contexts such as Taiwan, where robust infrastructure and prior experience with SARS facilitated the effective integration of big data and digital surveillance tools into public health strategies (Wang et al., 2020). Similarly, South Korea's extensive mobility data enabled responsive policymaking that was not feasible in settings with limited capacity (Li et al., 2020). Such disparities underscore the importance of strengthening health system infrastructures as a prerequisite for harnessing the potential of digital health tools.

Government communication practices represent another systemic factor that significantly influences public trust and compliance. Park and Wang (2022) emphasized that transparent and clear messaging was critical in building societal trust and ensuring adherence to preventive measures. Where governments failed to communicate effectively, misinformation and distrust undermined public health strategies, even when technological tools were available. Public emotions and perceptions were shown to directly affect preventive behaviors, with Zhu (2022) demonstrating that fear, hope, and anxiety shaped patterns of compliance. This highlights the interplay between technological innovation and socio-political dynamics, indicating that digital health interventions must be accompanied by robust strategies for communication and trustbuilding to be effective.

Potential solutions to these barriers have been identified across multiple studies. One recurring recommendation is the expansion of healthcare infrastructure through targeted investment in human resources, training, and capacity-building. Gunasekeran et al. (2021) stressed the need to empower healthcare workers with the skills necessary to leverage telehealth and AI systems effectively, which requires ongoing professional development rather than ad hoc training during crises. Building such capacity ensures that digital tools can be embedded into routine healthcare delivery, thereby enhancing both crisis preparedness and everyday service delivery.

Another promising avenue lies in the use of visual analytic systems to support decision-making. Chishtie et al. (2020) illustrated that interactive dashboards allowed decision-makers to interpret complex datasets rapidly, translating technical information into actionable policies. This aligns with the work of Katapally and Ibrahim (2023), who showed that dashboards improved response efficiency by integrating diverse data sources into a single, accessible platform. These examples demonstrate that visual analytics can bridge the gap between technical data and policy action, especially when coupled with strong governance and clear communication.

Community-based approaches provide an additional layer of resilience by ensuring that local knowledge and participation inform public health interventions. Ramvilas et al. (2021) demonstrated how citizen science initiatives could fill data gaps and enhance community engagement, ultimately fostering greater trust in public systems. Such participatory models suggest that the integration of community voices into data collection and monitoring processes not only strengthens the evidence base but also improves the legitimacy and acceptance of public health measures. In contexts where trust in government is low, these approaches may be particularly valuable in creating bottom-up support for interventions.

The implications of these findings extend to the broader question of how digital health can be embedded into systemic governance frameworks. The evidence suggests that without careful attention to infrastructure, communication, and community engagement, technological

innovations risk being underutilized or resisted. Conversely, when these factors align, digital tools can significantly strengthen public health resilience. The challenge for policymakers is therefore to adopt a holistic approach that integrates digital health technologies with systemic reforms in governance, health infrastructure, and participatory policymaking.

Despite these promising directions, limitations in the existing literature should be acknowledged. Many studies rely on short-term data collected during the acute phases of the COVID-19 pandemic, limiting the ability to assess long-term impacts of digital health interventions. Furthermore, the predominance of research from high-income countries raises questions about generalizability to low- and middle-income contexts, where barriers and enablers may differ substantially. Publication bias may also have skewed the evidence base, as studies reporting positive outcomes are more likely to be disseminated widely. These limitations point to the need for more longitudinal, cross-contextual research that systematically examines both successes and failures of digital health implementations.

Future research should also explore how digital health tools can be tailored to specific cultural and institutional contexts. Comparative analyses between countries such as Taiwan, South Korea, and the Democratic Republic of Congo reveal stark differences in outcomes despite the availability of similar technologies, suggesting that context-specific adaptations are critical. Investigating how digital health interventions intersect with broader issues such as inequality, governance capacity, and socio-political trust will be essential to building a more nuanced understanding of their potential. Additionally, further inquiry into ethical concerns, particularly regarding privacy and surveillance, is needed to ensure that technological advances do not exacerbate societal divisions or undermine public trust.

In sum, this discussion highlights that the promise of digital health technologies lies not only in their technical capacity but also in their integration within systemic, social, and institutional frameworks. Addressing infrastructure weaknesses, improving government communication, investing in workforce development, and fostering community participation are essential steps toward realizing the full potential of digital health. While the literature provides valuable insights into these dynamics, it also underscores the need for sustained, interdisciplinary research that bridges the gap between technological innovation and public health governance.

CONCLUSION

This narrative review highlights the transformative role of digital health technologies and big data analytics in shaping public health responses during the COVID-19 pandemic and beyond. The findings emphasize that digital innovations, including telehealth, artificial intelligence, and visual analytics, significantly improved health system resilience by enabling real-time monitoring, predictive modeling, and rapid decision-making. However, their effectiveness was shown to be strongly mediated by systemic factors such as infrastructure readiness, government transparency, public trust, and community engagement. Countries with robust infrastructures and proactive policies, such as Taiwan and South Korea, demonstrated markedly better outcomes than regions where technological access and governance capacity were limited.

The discussion further underscores that overcoming these challenges requires holistic strategies that integrate technology with systemic reforms. Strengthening healthcare infrastructure, improving workforce training, adopting transparent communication, and fostering citizen participation are central strategies for bridging the gap between technological capacity and effective public health outcomes. These approaches not only enhance short-term crisis response but also build long-term resilience in health and education systems. Future research should prioritize longitudinal and cross-contextual studies that examine both successes and failures, with particular attention to ethical considerations, equity, and cultural adaptation. By embedding technology within inclusive and accountable governance frameworks, societies can harness its full potential to mitigate current health crises and prepare more effectively for future pandemics.

REFERENCE

- Arian, M. (2025). Opportunities and threats of e-learning in nursing education: an overview of reviews. *Journal of Caring Sciences*, 14(2), 102-115. https://doi.org/10.34172/jcs.025.33459
- Beks, H., Ewing, G., Charles, J., Mitchell, F., Paradies, Y., Clark, R., ... & Versace, V. (2020). Mobile primary health care clinics for indigenous populations in Australia, Canada, New Zealand and the United States: a systematic scoping review. *International Journal for Equity in Health*, 19(1). https://doi.org/10.1186/s12939-020-01306-0
- Black, E., & Kisely, S. (2018). A systematic review: non-suicidal self-injury in Australia and New Zealand's indigenous populations. *Australian Psychologist*, 53(1), 3-12. https://doi.org/10.1111/ap.12274
- Bond, M., Zawacki-Richter, O., & Nichols, M. (2018). Revisiting five decades of educational technology research: a content and authorship analysis of the British Journal of Educational Technology. *British Journal of Educational Technology*, 50(1), 12-63. https://doi.org/10.1111/bjet.12730
- Car, J., Carlstedt-Duke, J., Car, L., Posadzki, P., Whiting, P., Zary, N., ... & Campbell, J. (2018). Digital education in health professions: the need for overarching evidence synthesis (preprint). https://doi.org/10.2196/preprints.12913
- Car, L., Soong, A., Kyaw, B., Chua, K., Low-Beer, N., & Majeed, A. (2019). Health professions digital education on clinical practice guidelines: a systematic review by digital health education collaboration. *BMC Medicine*, 17(1). https://doi.org/10.1186/s12916-019-1370-1
- Chishtie, J., Marchand, J., Turcotte, L., Bielska, I., Babineau, J., Cepoiu-Martin, M., ... & Jaglal, S. (2020). Visual analytic tools and techniques in population health and health services research: scoping review. *Journal of Medical Internet Research*, 22(12), e17892. https://doi.org/10.2196/17892

- Derkyi-Kwarteng, A., Agyepong, I., Enyimayew, N., & Gilson, L. (2021). A narrative synthesis review of out-of-pocket payments for health services under insurance regimes: a policy implementation gap hindering universal health coverage in Sub-Saharan Africa. *International Journal of Health Policy and Management*. https://doi.org/10.34172/ijhpm.2021.38
- Ellen, M., Lavis, J., Horowitz, E., & Berglas, R. (2018). How is the use of research evidence in health policy perceived? A comparison between the reporting of researchers and policy-makers. *Health Research Policy and Systems, 16*(1). https://doi.org/10.1186/s12961-018-0345-6
- García, P. (2019). Corruption in global health: the open secret. *The Lancet, 394*(10214), 2119-2124. https://doi.org/10.1016/s0140-6736(19)32527-9
- Gueguen, C., Snel, N., & Mutonji, E. (2022). Turning mobile big data insights into public health responses in times of pandemics: lessons learnt from the Democratic Republic of the Congo. *Data & Policy, 4.* https://doi.org/10.1017/dap.2021.30
- Gunasekeran, D., Tseng, R., Tham, Y., & Wong, T. (2021). Applications of digital health for public health responses to COVID-19: a systematic scoping review of artificial intelligence, telehealth and related technologies. *NPJ Digital Medicine*, 4(1). https://doi.org/10.1038/s41746-021-00412-9
- Hinojo-Lucena, F., Díaz, I., Reche, M., & Rodríguez, J. (2019). Artificial intelligence in higher education: a bibliometric study on its impact in the scientific literature. *Education Sciences*, 9(1), 51. https://doi.org/10.3390/educsci9010051
- Katapally, T., & Ibrahim, S. (2023). Digital health dashboards for decision-making to enable rapid responses during public health crises: replicable and scalable methodology. *JMIR Research Protocols*, 12, e46810. https://doi.org/10.2196/46810
- Li, Z., Li, X., Porter, D., Zhang, J., Jiang, Y., Olatosi, B., ... & Weissman, S. (2020). Monitoring the spatial spread of COVID-19 and effectiveness of control measures through human movement data: proposal for a predictive model using big data analytics. *JMIR Research Protocols*, 9(12), e24432. https://doi.org/10.2196/24432
- Lu, P., Park, E., Rabin, T., Schwartz, J., Shearer, L., Siegler, E., ... & Peck, R. (2018). Impact of global health electives on US medical residents: a systematic review. *Annals of Global Health*, 84(4), 692. https://doi.org/10.29024/aogh.2379
- Mapulanga, P., Raju, J., & Matingwina, T. (2019). Levels of research evidence in health policy assessment in Malawi. *Leadership in Health Services*, 32(2), 226-250. https://doi.org/10.1108/lhs-09-2018-0050
- Muvunyi, C., Ngabonziza, J., Masaisa, F., Mukagatare, I., Twagirumukiza, M., Ahmed, A., ... & Siddig, E. (2024). Uncovering the diversity and distribution of fungal infections in Rwanda:

- assessing risks and documenting knowledge and policy gaps. https://doi.org/10.20944/preprints202407.0756.v1
- Nordenström, E., Bergenfelz, A., & Almquist, M. (2018). Permanent hypoparathyroidism after total thyroidectomy in children: results from a national registry. *World Journal of Surgery*, 42(9), 2858-2863. https://doi.org/10.1007/s00268-018-4552-7
- O'Brien, G., Sinnott, S., Walshe, V., Mulcahy, M., & Byrne, S. (2020). Health policy triangle framework: narrative review of the recent literature. *Health Policy Open, 1*, 100016. https://doi.org/10.1016/j.hpopen.2020.100016
- Özyurt, Ö., & Ayaz, A. (2022). Twenty-five years of education and information technologies: insights from a topic modeling based bibliometric analysis. *Education and Information Technologies*, 27(8), 11025-11054. https://doi.org/10.1007/s10639-022-11071-y
- Park, S., & Wang, R. (2022). Assessing the capability of government information intervention and socioeconomic factors of information sharing during the COVID-19 pandemic: a cross-country study using big data analytics. *Behavioral Sciences*, 12(6), 190. https://doi.org/10.3390/bs12060190
- Prahani, B., Rizki, I., Jatmiko, B., Suprapto, N., & Tan, A. (2022). Artificial intelligence in education research during the last ten years: a review and bibliometric study. *International Journal of Emerging Technologies in Learning (iJET)*, 17(08), 169-188. https://doi.org/10.3991/ijet.v17i08.29833
- Ramvilas, G., Dhyani, S., Kumar, A., Sinha, N., Raghavan, R., Selvaraj, G., ... & Molur, S. (2021). Insights on COVID-19 impacts, challenges and opportunities for India's biodiversity research: from complexity to building adaptations. *Biological Conservation*, 255, 109003. https://doi.org/10.1016/j.biocon.2021.109003
- Ritzhaupt, A., Wang, X., Hampton, J., & Dawson, K. (2022). Trends and priorities of educational technology research: a Delphi study. *Contemporary Educational Technology*, 14(4), ep383. https://doi.org/10.30935/cedtech/12317
- Shi, D., Zhou, J., Wang, D., & Wu, X. (2022). Research status, hotspots, and evolutionary trends of intelligent education from the perspective of knowledge graph. *Sustainability*, 14(17), 10934. https://doi.org/10.3390/su141710934
- Slifko, S., Vielot, N., Becker-Dreps, S., Pathman, D., Myers, J., & Carlough, M. (2021). Students with global experiences during medical school are more likely to work in settings that focus on the underserved: an observational study from a public US institution. *BMC Medical Education*, 21(1). https://doi.org/10.1186/s12909-021-02975-3
- Sungkono, S., Makrufardi, F., Azizah, A., & Ekaputra, F. (2024). Exploring challenges, innovations, and technological integration in medical education after COVID-19 pandemic:

- an in-depth analysis. *Journal of Medicine*, 25(2), 166-172. https://doi.org/10.3329/jom.v25i2.74377
- SeyedAlinaghi, S., Yarmohammadi, S., Mirzapour, P., Dehghani, S., Ahmadi, S., Abbaspour, F., ... & Mehraeen, E. (2024). A systematic review of telehealth applications in endocrinology. *Telemedicine Reports*, *5*(1), 269-289. https://doi.org/10.1089/tmr.2024.0032
- Thoumi, A., Bond, S., Dotson, M., Krieger, M., García, P., & Ramanujam, N. (2021). Policy considerations to promote equitable cervical cancer screening and treatment in Peru. *Annals of Global Health*, 87(1), 116. https://doi.org/10.5334/aogh.3442
- Wang, C., Ng, C., & Brook, R. (2020). Response to COVID-19 in Taiwan. *JAMA*, *323*(14), 1341. https://doi.org/10.1001/jama.2020.3151
- Zhu, H. (2022). Interplay between discrete emotions and preventive behavior in health crises: big data analysis of COVID-19. *International Journal of Environmental Research and Public Health,* 19(24), 16407. https://doi.org/10.3390/ijerph192416407