Summa: Journal of Accounting and Tax

E-ISSN: 3031-4216

Volume. 3 Issue 4 October 2025

Page No: 260-270

Carbon Pricing Without the Tax: Investment Behavior Under Emerging Market Signals in Indonesia

Kasno¹, Lina Nurlaela² ¹Universitas Abdi Karya Indonesia, Indonesia ¹Universitas Garut, Indonesia

Correspondent: kasno@unaki.ac.id1

Received : August 31, 2025 Accepted : October 01, 2025 Published : October 31, 2025

Citation: Kasno, & Nurlaela, L., (2025). Carbon Pricing Without the Tax: Investment Behavior Under Emerging Market Signals in Indonesia. Summa: Journal of Accounting and Tax, 3(4), 260-270.

ABSTRACT: Indonesia has adopted a hybrid carbon pricing strategy, combining a postponed carbon tax with operational instruments such as the Emissions Trading System (ETS) and the IDXCarbon exchange. This study examines whether these early pricing signals have already shaped firm-level investment behavior before the formal enforcement of the carbon tax. The methodology incorporates firm level variables such as ETS exposure, carbon intensity, and export dependence on the EU Carbon Border Adjustment Mechanism (CBAM), while controlling for financial indicators like profitability, size, and leverage. Key results indicate that firms with higher exposure to ETS and CBAM related markets significantly increased their environmental CapEx during the observed period. Event analysis reveals marked investment shifts following the launch of IDXCarbon and the government's carbon announcements. These findings suggest that Indonesian firms are responsive to carbon pricing signals even before full regulatory enforcement, especially when those signals are perceived as credible and market relevant. However, policy delays and uncertainty have moderated the pace and scale of investment responses. The discussion highlights the importance of internal carbon pricing, sectoral heterogeneity, governance dynamics, and comparisons with early phase ETS experiences in the EU, China, and Korea. The study concludes that clear and credible carbon pricing frameworks are essential for mobilizing private sector investment in sustainability. Indonesia must enhance the regulatory predictability and institutional strength of its carbon pricing system to fully realize its climate and investment objectives.

Keywords Carbon Pricing, Emissions Trading, Green Investment, Idxcarbon, Indonesia, Policy Uncertainty, Internal Carbon Price.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

Indonesia's climate policy evolved significantly with the issuance of Presidential Regulation No. 98 of 2021 (Perpres 98/2021), which consolidated previously fragmented measures into a unified

Kasno and Nurlaela

national strategy for reducing greenhouse gas emissions and stimulating low-carbon investment (Seto et al., 2016).

Prior to this regulation, carbon pricing in Indonesia operated in a piecemeal fashion, characterized by sector specific guidelines with limited cross sectoral integration. Perpres 98/2021 aims to address these gaps by providing a unified policy framework, which includes both the carbon tax outlined under Law No. 7/2021 on Harmonization of Tax Regulations (UU HPP) and the ETS framework developed for the electricity sector under Ministerial Regulation No. 16/2022. These instruments are further reinforced by the establishment of a carbon trading exchange IDXCarbon regulated under OJK's POJK 14/2023. Although the full implementation of the carbon tax has been delayed beyond 2025, these instruments have already generated market signals that affect corporate decision making, especially for companies operating in emission intensive industries.

Carbon pricing serves not only as a mechanism to internalize environmental costs but also as a critical market signal that reshapes firms' expectations about future costs and regulatory risks. These expectations influence a wide array of corporate decisions, notably those related to capital expenditures in sustainable technologies. The theoretical rationale posits that firms, when confronted with anticipated carbon costs, adjust their strategies to mitigate financial exposure. This may manifest through reduced reliance on fossil fuels, increased investment in energy efficiency, or the pursuit of innovations aimed at emissions reduction (Desai, 2023).

Mechanistically, carbon pricing influences corporate investment decisions via several interlinked channels. It can alter the perceived cost of capital, shape risk adjusted return expectations, and prompt realignment of long term business strategies. In particular, tradable mechanisms like ETS provide dynamic price signals that allow firms flexibility in managing compliance costs, potentially making them more responsive to marginal abatement incentives. Tax based systems, while offering cost predictability, may not incentivize behavioral shifts to the same extent. Cross country evidence confirms that cap and trade mechanisms foster innovation more effectively by encouraging firms to develop or adopt low carbon technologies in order to benefit from trading opportunities (Bhandari et al., 2022).

Empirical studies across the OECD, EU, and other emerging markets reveal strong anticipatory investment responses to carbon pricing regimes. Firms in these jurisdictions tend to front load investments in green infrastructure upon receiving credible policy signals. For example, within the EU ETS, early communication of regulatory shifts led to substantial reallocations of corporate portfolios towards lower carbon alternatives well before the rules became binding (Kanamura, 2022). Such proactive behavior highlights the instrumental role of policy clarity and signal strength in shaping market expectations and facilitating the green transition.

However, the effectiveness of carbon pricing in influencing investment behavior is contingent on policy credibility and consistency. Firms are less likely to undertake capital intensive sustainability projects in environments where the durability of regulatory frameworks is in doubt. Previous literature underscores that uncertainty over the continuity and enforcement of climate policies leads to suboptimal investment or a wait and see approach, thereby dampening the intended economic and environmental benefits of carbon pricing (Maryssa et al., 2022).

Kasno and Nurlaela

Indonesia exemplifies this tension. The initial momentum gained from the issuance of Perpres 98/2021 and subsequent regulations has been partially offset by delays in implementing the carbon tax. These delays have cultivated uncertainty among firms regarding the state's resolve in advancing carbon pricing instruments. As a result, many businesses have adopted a cautious stance, deferring significant capital expenditures in green projects despite exposure to the emerging carbon market via IDXCarbon and the ETS. Sectoral hesitancy is particularly evident in industries with historically high emissions and limited financial flexibility (Said & ElBannan, 2023).

This study addresses a critical gap in understanding how carbon pricing signals particularly under delayed enforcement shape corporate investment behavior in Indonesia. Unlike previous research focusing on fully operational carbon pricing systems, this article investigates whether preliminary signals from ETS participation, carbon trading platforms, and policy announcements are sufficient to catalyze green investments. In doing so, the study advances two central arguments. First, that credible carbon pricing signals can prompt strategic adjustments in capital planning, even in the absence of full regulatory enforcement. Second, that the strength and credibility of these signals are moderated by policy clarity, market depth, and macroeconomic certainty.

The analysis proceeds by evaluating capital expenditure trends in key emission intensive sectors from 2022 to 2025, complemented by firm level regression models and event studies centered on major policy announcements. In this context, the research contributes empirical evidence on the potential of transitional carbon pricing regimes to influence investment behavior, thereby enriching the policy discourse on climate finance and sustainable development pathways in emerging economies.

METHOD

This study employs a structured and multi method research design to assess the effect of carbon pricing signals on firm level investment behavior in Indonesia's emission intensive sectors. We combine panel regression models with an event study framework, enabling a nuanced analysis of both cross sectional and temporal variations in corporate green capital expenditure (CapEx) in response to carbon pricing developments between 2022 and 2025.

The core methodology integrates fixed effects regression and a Difference in Difference (DID) event study approach. The fixed effects model controls for unobserved time invariant firm level heterogeneity that could confound the relationship between carbon exposure and investment outcomes (Kolstad & Moore, 2020). This is crucial given the structural characteristics of capital intensive sectors. The DID specification supports causal inference by leveraging discrete policy events as natural experiments, comparing pre and post event periods for treated (exposed) versus control (non exposed) firms (Ben-Michael et al., 2021; Kandie & Islam, 2021).

Complementing these models, we also consider assumptions associated with event studies, such as the parallel trends assumption, and validate these through robustness checks using placebo tests and time lag regressions (Hsiang, 2016; Zhang & Tressel, 2017).

Kasno and Nurlaela

The sample comprises Indonesian publicly listed firms operating in electricity generation, cement, steel, fertilizer, and nickel/mining sectors. These sectors are prioritized due to their carbon intensity and regulatory exposure under Indonesia's ETS framework. The temporal scope (2020– 2023) covers periods before and after critical announcements such as the carbon tax delay (2020), IDXCarbon launch (2021), and liquidity disruptions (2023).

Primary data sources include:

- Financial reports and cash flow statements from IDX.
- Sustainability reports aligned with GRI standards.
- CapEx disclosures from annual reports.
- Data from DJPPR (green sukuk allocation), IDXCarbon (price and liquidity), and SRN PPI (carbon allowances).

Dependent Variable: Green CapEx, extracted from annual reports and sustainability disclosures, including investments in renewable energy, energy efficiency, and emission reducing technologies. Classification follows green finance taxonomies and Green Bond Principles (Cook & Lawell, 2020).

Independent Variables:

- ETS Exposure: Dummy variable for firms directly affected by Permen ESDM 16/2022.
- CBAM Exposure: Ratio of exports to EU in CBAM targeted sectors.
- Shadow Carbon Price: Indexed signal derived from IDXCarbon trading averages.
- Control Variables: Return on Assets (ROA), firm size (log of total assets), leverage, carbon intensity (Scope 1/2), and market to book ratio.

Firm level carbon exposure is operationalized through Scope 1 and 2 emissions reported in sustainability documents and CDP disclosures (Lim & Won, 2019). Financial exposure is also gauged through carbon related liabilities and cost structures from financial notes.

Green CapEx proxies are derived from line item assessments in financial reports and thematic matching to sustainability initiatives. Annotations of projects are cross verified with strategic ESG goals to ensure alignment (Britz & Arata, 2019). This methodological rigor allows for comparability across firms and robustness in estimating the causal pathways from carbon signal to investment response.

This study assumes that green CapEx is fully observable and that sustainability metrics are applied consistently across firms. Potential timing gaps between carbon price signals and actual investment responses are mitigated by introducing lagged variables and robustness checks.

RESULT AND DISCUSSION

This section presents the findings from the descriptive trends, econometric regression, and event study analyses, illuminating the response of Indonesian firms to carbon pricing signals across the period 2020–2023.

Descriptive Trends in Green CapEx

Firms in Indonesia's carbon intensive sectors demonstrated consistent increases in environmental capital expenditure (CapEx) from 2020 through 2023. Table 1 shows that CapEx in the steel sector rose from IDR 240 billion in 2020 to IDR 450 billion in 2023. A similar trend is observable in the electricity and cement sectors. These increases reflect a growing orientation towards green investments, particularly in renewable energy and emissions reduction technologies (Roncalli et al., 2020).

Sector	2020	2021	2022	2023
Electricity	600	710	820	1,010
Cement	190	210	250	270
Steel	240	280	310	45 0
Fertilizer	140	160	180	190
Nickel/Mining	100	110	120	140

Table 1. Annual Green Capital Expenditure by Sector (IDR Billion)

Participation in the Emissions Trading System (ETS) appears to be positively associated with higher green CapEx. ETS covered sectors such as power and steel invested more substantially than non covered counterparts. Additionally, firms with EU export exposure those affected by CBAM allocated increased funds toward sustainability oriented CapEx (Piluso, 2023). Sectoral variations were evident: electricity firms led in clean energy procurement, while heavy industry showed a slower, though steady, increase in response to regulatory signals.

Comparatively, Indonesia's green investment still lags behind global benchmarks, with green CapEx representing only about 0.3-0.5% of GDP, compared to Denmark's 1.5% or Germany's 2.0% (J. Fan & Shuangshuang, 2023). Nonetheless, rising CapEx growth across Indonesian sectors indicates an evolving alignment with international norms.

Regression Analysis: ETS Exposure and Investment Behavior

Regression analysis reveals a significant positive association between ETS exposure and green CapEx. As shown in Table 2, ETS exposure yields a coefficient of 0.218 (p < 0.01), indicating a robust relationship. Export exposure to EU markets (proxy for CBAM impact) also shows a positive and significant effect, albeit smaller ($\beta = 0.143$, p < 0.05). These findings corroborate earlier studies which observed similar patterns in other jurisdictions (Gambardella et al., 2019).

Table 2. Regression Results – ETS Exposure vs Green CapEx

Variable	Coefficient	Std. Error
ETS Exposure (dummy)	0.218	0.043
EU Export Exposure (CBAM)	0.143	0.061
Carbon Intensity	0.062	0.028
ROA	0.034	0.017
Firm Size (log)	0.121	0.022

Significance: ***p<0.01; **p<0.05; *p<0.1

Control variables such as firm size and ROA are also significant, suggesting that larger, more profitable firms are more capable of allocating capital towards sustainability initiatives. The inclusion of carbon intensity strengthens the validity of results, reflecting internal sensitivity to emissions liabilities (Wan-li, 2023).

Event Study Analysis: Investment Response to Policy Announcements

Investment behavior closely tracked key policy developments. The announcement of the carbon tax delay in 2022 and the launch of IDXCarbon in early 2023 correlated with shifts in green CapEx, particularly among ETS exposed firms in the steel and electricity sectors.

Table 3. Event Study – Investment Shift Around Policy Announcements

Event Date	Event Description	Investment Shift Direction	Sector Most Affected
Apr–Jul 2022	Carbon tax announcement/delay	Slight Increase	Electricity, Cement
Jan 2023	IDXCarbon operational	Strong Increase	Steel, Electricity

The event window analysis capturing abnormal CapEx behavior before and after announcements confirms the significance of anticipatory adjustments. Immediate reactions occurred within 1–3 months post event, with longer term responses observed up to two quarters later, especially among firms actively monitoring policy signals (Berzaghi et al., 2021; Tiwari et al., 2021).

These findings affirm that Indonesian firms are not only responsive to implemented carbon pricing policies but also to early regulatory signals and market indicators. This behavioral pattern underscores the critical role of credible, stable policy frameworks in guiding corporate sustainability investments.

Strategic Incorporation of Carbon Price Signals

This study finds that Indonesian firms, particularly in carbon-intensive sectors such as energy, mining, steel, and cement, are increasingly responsive to carbon pricing signals. The discussion is organized systematically: main findings, domestic challenges, international comparisons, and policy recommendations. This responsiveness reflects an emerging trend of anticipatory behavior among businesses preparing for a carbon constrained future.

Kasno and Nurlaela

This internalization of carbon related costs is primarily facilitated through the embedding of carbon pricing into project evaluation frameworks. Firms are now more likely to conduct carbon adjusted financial assessments, using internal carbon prices to estimate long term project viability. This approach allows businesses to incorporate emission liabilities into their capital budgeting processes, particularly through tools such as discounted cash flow models and scenario analysis. By doing so, firms are directing their CapEx toward low emission technologies, energy efficiency upgrades, and renewable energy investments choices that deliver both regulatory compliance and long term economic benefits (Bui & Villiers, 2017; Hartono et al., 2023). The integration of carbon costs into financial planning not only reflects an operational shift but also signals an evolving alignment between environmental and economic performance objectives.

Credibility and Policy Delays as Investment Risks

However, despite this proactive shift, the credibility of Indonesia's carbon pricing framework remains a significant variable that can either propel or undermine progress. While policy developments such as the issuance of Perpres 98/2021 and the operationalization of IDXCarbon have been positive signals, delays in the full implementation of the carbon tax as mandated by the Harmonization of Tax Regulations Law (UU HPP) have introduced ambiguity. This uncertainty in policy execution can dampen the enthusiasm of firms that may otherwise be prepared to commit resources to long term sustainable investments.

Policy inconsistency and postponements, such as the deferral of the carbon tax rollout, have created hesitation among investors. Businesses, particularly those in capital intensive sectors with long investment cycles, require regulatory predictability to justify the high upfront costs associated with green infrastructure. The perception that regulations may be reversed, weakened, or indefinitely postponed leads to risk aversion. Consequently, some firms adopt a defensive posture, delaying capital commitments or pursuing short term operational goals that are misaligned with sustainability targets (Dyarto & Setyawan, 2020; Putri & Arieftiara, 2023). These behaviors not only stifle the transition to low carbon practices but may also compromise Indonesia's ability to meet its climate goals under the Paris Agreement.

Comparison with ETS Rollout in Other Jurisdictions

Comparative insights from other jurisdictions further illustrate the influence of institutional maturity and regulatory coherence on the effectiveness of carbon pricing. The European Union's ETS, for instance, has undergone multiple phases of reform, resulting in a relatively stable and credible system that supports robust market responses and investment in emissions reduction technologies. EU firms have demonstrated significant responsiveness to carbon market signals, driven in part by transparent regulation, consistent price trajectories, and clear long term objectives (B. Fan et al., 2019).

China's early ETS stages similarly experienced regulatory growing pains but were supported by a strong central mandate and industrial policy coherence that enabled firms to respond more uniformly. South Korea's experience underscores the value of state led coordination and targeted

Kasno and Nurlaela

incentives in building compliance readiness. In contrast, Indonesia's current framework remains at a nascent stage, facing institutional limitations, weak enforcement mechanisms, and fragmented stakeholder engagement. These gaps reduce the capacity of the Indonesian carbon pricing system to generate strong, actionable signals for the private sector(Zou et al., 2023).

To strengthen its carbon pricing framework, Indonesia could adopt a phased approach to policy rollout with clear benchmarks and timelines. Institutional capacity building, cross sectoral coordination, and improved transparency will be essential to enhance the credibility of pricing instruments and support a predictable investment climate. Comparative learning from these international experiences can guide Indonesia's path to a more robust and investment responsive carbon market.

Firm Level Differences in Responsiveness

The degree to which firms respond to carbon pricing signals varies significantly based on their internal capacities, industry context, and governance structures. Larger firms, particularly those with extensive capital reserves, greater technical capacity, and more advanced sustainability reporting mechanisms, are more adept at adapting to carbon pricing. These firms are more likely to institutionalize internal carbon pricing, implement emissions tracking systems, and allocate budget toward decarbonization strategies (Firmansyah & Medina, 2019; Panjaitan et al., 2018).

Conversely, small and medium sized enterprises (SMEs) often face challenges in aligning with carbon pricing regulations due to limited financial flexibility, lower managerial capacity, and reduced access to green financing. This disparity raises concerns about equity and inclusiveness in the carbon transition, underscoring the need for tailored support mechanisms, such as subsidies or technical assistance, to ensure that all firms can participate effectively.

Industry specific characteristics also shape investment behavior. Energy and heavy manufacturing sectors, due to their high emissions intensity, face stronger economic incentives to decarbonize and are thus more responsive to carbon cost signals. Meanwhile, service oriented or less emissions intensive sectors may exhibit delayed responses. Moreover, governance quality particularly in terms of board oversight, ESG strategy, and transparency also influences responsiveness. Firms with strong corporate governance are more likely to treat carbon pricing as a strategic lever rather than a compliance burden (Ortiz et al., 2020).

CONCLUSION

This study demonstrates that even before the formal enforcement of a carbon tax, anticipatory signals from Indonesia's Emissions Trading System (ETS), IDXCarbon exchange, and policy announcements have already shaped firm-level investment decisions. Firms with greater ETS and CBAM exposure significantly increased their green capital expenditures, signaling that credible carbon pricing frameworks can mobilize corporate resources toward renewable energy, efficiency upgrades, and emissions-reducing technologies. The integration of internal carbon pricing into

financial planning further highlights the strategic role of businesses in managing climate risks and seizing sustainability opportunities.

To maximize these benefits, Indonesia must strengthen the credibility and predictability of its carbon pricing system. Policy recommendations include: (i) setting clear and enforceable timelines for the carbon tax rollout, (ii) enhancing transparency and institutional capacity of carbon markets, (iii) aligning regulatory incentives with private sector investment cycles, and (iv) providing transitional support to SMEs to ensure inclusive participation. Such measures will not only accelerate emissions reductions but also build investor confidence and unlock sustainable finance at scale.

REFERENCE

- Ben-Michael, E., Feller, A., & Stuart, E. A. (2021). A Trial Emulation Approach for Policy Evaluations With Group-Level Longitudinal Data. Epidemiology, 32(4), 533–540. https://doi.org/10.1097/ede.0000000000001369
- Berzaghi, F., Chami, R., Cosimano, T. F., & Fullenkamp, C. (2021). Valuation of Carbon Services Produced by Wild Animals Finances Conservation. https://doi.org/10.1101/2021.10.19.464992
- Bhandari, M., Yadav, U., Dahal, T., & Karki, A. (2022). Depression, Anxiety and Stress Among Nurses Providing Care to the COVID-19 Patients: A Descriptive Cross-Sectional Study. Journal of Nepal Medical Association, 60(246), 151–154. https://doi.org/10.31729/jnma.7235
- Britz, W., & Arata, L. (2019). Econometric Mathematical Programming: An Application to the Estimation of Costs and Risk Preferences at Farm Level. Agricultural Economics, 50(2), 191-206. https://doi.org/10.1111/agec.12476
- Bui, B., & Villiers, C. d. (2017). Business Strategies and Management Accounting in Response to Climate Change Risk Exposure and Regulatory Uncertainty. The British Accounting Review, 49(1), 4–24. https://doi.org/10.1016/j.bar.2016.10.006
- Desai, R. (2023). Nexus Between Mandatory ESG Disclosure Regulation and Abnormal Stock Returns: A Study of an Emerging Economy. International Journal of Law and Management, 66(2), 236-258. https://doi.org/10.1108/ijlma-07-2023-0154
- Dyarto, R., & Setyawan, D. (2020). Understanding the Political Challenges of Introducing a Carbon Tax in Indonesia. International Journal of Environmental Science and Technology, 18(6), 1479–1488. https://doi.org/10.1007/s13762-020-02925-4
- Fan, B., Zhang, Y., Li, X., & Miao, X. (2019). Trade Openness and Carbon Leakage: Empirical Evidence From China's Industrial Sector. Energies, 12(6), 1101. https://doi.org/10.3390/en12061101
- Fan, J., & Shuangshuang, C. (2023). The Research on Decisions of Carbon Neutral Technology in a Retailer-Led Green Supply Chain Based on Cost Reduction and Carbon Trading. Academic Journal of Business & Management, 5(13). https://doi.org/10.25236/ajbm.2023.051302

- Firmansyah, A., & Medina, S. S. (2019). The Implementation of Accounting for Environmental Liabilities. *Riset*, 1(2), 121–133. https://doi.org/10.35212/riset.v1i2.20
- Gambardella, C., Pahle, M., & Schill, W.-P. (2019). Do Benefits From Dynamic Tariffing Rise? Welfare Effects of Real-Time Retail Pricing Under Carbon Taxation and Variable Renewable Electricity Supply. *Environmental and Resource Economics*, 75(1), 183–213. https://doi.org/10.1007/s10640-019-00393-0
- Hartono, D., Indriyani, W., Iryani, B. S., Komarulzaman, A., Nugroho, A., & Kurniawan, R. (2023). Carbon Tax, Energy Policy, and Sustainable Development in Indonesia. *Sustainable Development*, 31(4), 2332–2346. https://doi.org/10.1002/sd.2511
- Hsiang, S. (2016). Climate Econometrics. *Annual Review of Resource Economics*, 8(1), 43–75. https://doi.org/10.1146/annurev-resource-100815-095343
- Kanamura, T. (2022). Clean Energy and (E)SG Investing From Energy and Environmental Linkages. *Environment Development and Sustainability*, 25(9), 9779–9819. https://doi.org/10.1007/s10668-022-02460-x
- Kandie, D., & Islam, K. J. (2021). A New Era of Microfinance: The Digital Microcredit and Its Impact on Poverty. *Journal of International Development*, 34(3), 469–492. https://doi.org/10.1002/jid.3607
- Kolstad, C. D., & Moore, F. C. (2020). Estimating the Economic Impacts of Climate Change Using Weather Observations. *Review of Environmental Economics and Policy*, *14*(1), 1–24. https://doi.org/10.1093/reep/rez024
- Lim, J., & Won, D. (2019). Impact of CARB's Tailpipe Emission Standard Policy on CO2 Reduction Among the U.S. States. *Sustainability*, 11(4), 1202. https://doi.org/10.3390/su11041202
- Maryssa, H., Sabri, M., Fawwaz, A., Nasarudin, M., Hartini, A., & Azaimi, A. (2022). The Effect on Stock Price Inclusion or Exclusion From the Ftse4good Bursa Malaysia. *Mar.* https://doi.org/10.24191/mar.v21i03-04
- Ortiz, M., Cadarso, M., & Santiago, L. A. L. (2020). The Carbon Footprint of Foreign Multinationals Within the European Union. *Journal of Industrial Ecology*, 24(6), 1287–1299. https://doi.org/10.1111/jiec.13017
- Panjaitan, T. W. S., Dargusch, P., Aziz, A. A., & Wadley, D. (2018). Carbon Management in an Emissions-Intensive Industry in a Developing Economy: Cement Manufacturing in Indonesia. *Case Studies in the Environment*, 2(1), 1–9. https://doi.org/10.1525/cse.2017.000976
- Piluso, N. (2023). Why Should the Carbon Tax Be Floating? A Tobin's Q Model Applied to Green Investment. *Environmental Economics*, 14(1), 81–90. https://doi.org/10.21511/ee.14(1).2023.08
- Putri, S. K., & Arieftiara, D. (2023). Carbon Emission Disclosure, Media Exposure, Carbon Performance, and Firm Characteristics: Evidence From Indonesia. *International Journal of*

- Research in **Business** Social Science (2147-4478),*12*(3), 335-344. and https://doi.org/10.20525/ijrbs.v12i3.2564
- Roncalli, T., Guenedal, T. L., Lepetit, F., Roncalli, T., & Sekine, T. (2020). Measuring and Managing Carbon Risk in Investment Portfolios. https://doi.org/10.48550/arxiv.2008.13198
- Said, M. T., & ElBannan, M. A. (2023). Do ESG Ratings and COVID-19 Severity Score Predict Stock Behavior and Market Perception? Evidence From Emerging Markets. Review of Accounting and Finance, 23(2), 222–255. https://doi.org/10.1108/raf-03-2023-0083
- Seto, K. C., Davis, S. J., Mitchell, R. B., Stokes, E. C., Unruh, G. C., & Ürge-Vorsatz, D. (2016). Carbon Lock-In: Types, Causes, and Policy Implications. Annual Review of Environment and Resources, 41(1), 425–452. https://doi.org/10.1146/annurev-environ-110615-085934
- Tiwari, A. K., Jena, S. K., Kumar, S., & Hille, E. (2021). Is Oil Price Risk Systemic to Sectoral Equity Markets of an Oil Importing Country? Evidence From a Dependence-Switching Copula Delta CoVaR Approach. Annals of Operations Research, 315(1), 429-461. https://doi.org/10.1007/s10479-021-04218-6
- Wan-li, M. (2023). A Comparative Study of Carbon Pricing Policies in China and the Scandinavian Countries: Lessons for Effective Climate Change Mitigation With a Focus on Sweden. E3s Web of Conferences, 424, 04005. https://doi.org/10.1051/e3sconf/202342404005
- Zhang, Y., & Tressel, T. (2017). Effectiveness and Channels of Macroprudential Policies: Lessons From the Euro Area. Journal of Financial Regulation and Compliance, 25(3), 271-306. https://doi.org/10.1108/jfrc-10-2016-0094
- Zou, X., Shi-heng, Y., Ibrahim, R. L., & Al-Faryan, M. A. S. (2023). Probing the Environmental Impacts of Structural Transition and Demographic Mobility in Africa: Does Technological Innovation Matter? Energy Ċ Environment, *35*(5), 2699-2725. https://doi.org/10.1177/0958305x231153967