Novatio: Journal of Management Technology and Innovation

E-ISSN: 3030-8674

Volume. 2, Issue 2, April 2024

Page No: 132-143

Strategic Roadmapping for AI Integration in Multinational Retail: Governance, Change Management, and Performance Outcomes

Loso Judijanto IPOSS Jakarta, Indonesia

Correspondent: losojudijantobumn@gmail.com

Received : February 26, 2024 Accepted : April 17, 2024 Published : April 30, 2024

Citation: Judijanto, L. (2024). Strategic Roadmapping for AI Integration in Multinational Retail: Governance, Change Management, and Performance Outcomes. Novatio: Journal of Management Technology and Innovation, 2(2), 132-143.

ABSTRACT: The adoption of Artificial Intelligence (AI) in the retail sector has become a crucial driver of transformation, enabling new forms of customer engagement and operational efficiency. This study investigates strategic roadmapping for AI integration in multinational retail by applying the Technology-Organization-Environment (TOE) framework. The research specifically addresses the gap in understanding how governance mechanisms and change management practices shape sustainable AI adoption across diverse markets. The study employs a mixed methodological approach, combining multi-case qualitative analysis with longitudinal data and quantitative performance metrics. Data include industry benchmarks, customer engagement indicators, operational efficiency measures, and revenue outcomes. This design allows the assessment of AI's influence on both customer-facing innovations and backend optimizations. Findings indicate that phased AI adoption, clear governance, and measurable KPI milestones are essential to move from pilot projects to full-scale deployment. Case evidence highlights benefits such as revenue gains through personalization, improved supply chain efficiency, and margin enhancement. Challenges including model drift, bias, and talent shortages are also identified, along with strategies for mitigation such as continuous monitoring and targeted upskilling. The study concludes that scaling AI requires balancing innovation with ethical and regulatory compliance. Effective change management, strong stakeholder engagement, and a culture of continuous learning are crucial to maintain momentum. Importantly, the lessons from retail AI adoption are transferable to other industries such as healthcare, finance, and education. Findings indicate that phased AI adoption, clear governance, and measurable KPI milestones are essential to move from pilot projects to fullscale deployment. Case evidence highlights benefits such as revenue gains through personalization, improved supply chain efficiency, and margin enhancement. Challenges including model drift, bias, and talent shortages are also identified, along with strategies for mitigation such as continuous monitoring and targeted upskilling.

Keywords: Artificial Intelligence, Retail Innovation, Strategic Roadmapping, Personalization, Technology Adoption.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

Artificial Intelligence (AI) has become a central focus in retail research and practice due to its transformative role in reshaping business operations, customer engagement, and strategic decision-

making. Despite the rapid evolution of AI applications, retailers face persistent challenges in effectively scaling adoption across diverse markets. To address these complexities, several frameworks have been introduced, among which the Technology–Organization–Environment (TOE) framework provides a robust lens for examining adoption drivers (H. Chen et al., 2020). Baral et al. (2023) illustrate how the TOE framework can be effectively applied in food retail supply chains, emphasizing its cross sector relevance.

While foundational principles of frameworks like TOE are globally applicable, regional market conditions, regulatory contexts, and cultural factors shape the specific implementation of AI technologies. Countries with strong digital infrastructure, supportive policies, and innovation ecosystems such as those in North America and East Asia are generally quicker to adopt AI than regions with less developed capabilities. Horani et al. (2023) highlight technological and socio environmental determinants as critical drivers of AI adoption, reinforcing the need for context sensitive strategies.

Recent advancements, particularly in Generative AI (GenAI), have further accelerated this transformation. GenAI enables hyper-personalized experiences and operational efficiencies through automated inventory management, dynamic pricing, and demand forecasting (Fu et al., 2023). These capabilities enhance sales performance while fostering long-term customer loyalty.

Despite these opportunities, scaling AI adoption in retail presents significant challenges. Structural issues such as legacy system integration, insufficient infrastructure, and organizational resistance to change often slow or derail implementation. Jatobá et al. (2023) identify a persistent shortage of skilled personnel as a major barrier, with many organizations struggling to recruit and retain employees capable of managing AI systems and interpreting outputs. Ethical concerns particularly around data privacy and algorithmic bias further complicate adoption. Dixon (2022) underscores the importance of robust governance frameworks to address these risks, ensuring compliance and maintaining consumer trust.

Case studies from leading retailers provide actionable insights into best practices. Companies such as Stitch Fix and Farfetch have successfully integrated AI to enhance personalization, streamline operations, and enable data driven decision making. By focusing on customer centric strategies, these organizations have increased engagement and improved operational agility (Abraham, 2023). The lessons from these cases highlight the value of aligning AI initiatives with customer needs, fostering a culture of innovation, and maintaining adaptability.

Organizational culture and leadership are decisive factors in the success of AI adoption. A culture that encourages experimentation, supports creativity, and embraces innovation significantly enhances the likelihood of successful integration (Olsson et al., 2019). Leadership plays a pivotal role in articulating the strategic vision, securing resources, and driving cross functional alignment. Effective leaders act as champions of change, promoting AI literacy across the organization and embedding governance practices that facilitate responsible adoption.

Measuring the impact of AI initiatives is essential for sustaining momentum and securing stakeholder buy in. Common metrics include operational efficiency gains, customer satisfaction scores, sales growth, and ROI. Olutimehin et al. (2024) emphasize the importance of quantifiable outcomes such as increased sales volumes, reduced operating costs, and improved customer retention as indicators of AI success. These metrics not only capture the direct benefits but also support iterative strategy refinement.

In summary, the strategic adoption of AI in retail is a multifaceted endeavor influenced by the interplay of technological readiness, organizational culture, leadership commitment, and external environmental factors. The TOE framework offers a robust foundation for guiding adoption strategies, but success depends on contextual adaptation, effective governance, and alignment with business objectives. While challenges such as infrastructure limitations, skill shortages, and ethical considerations persist, best practices from leading retailers demonstrate that these can be overcome through strong leadership, a culture of innovation, and a customer centric approach. By embedding these principles into strategic roadmaps, retailers can harness AI to secure sustainable competitive advantage in an increasingly digital marketplace.

This study aims to: (1) identify critical enablers of AI adoption in multinational retail; (2) evaluate governance and change management mechanisms; and (3) highlight best practices for sustainable scaling. The research contributes by bridging theoretical perspectives with empirical evidence, offering a roadmap for both scholars and practitioners.

METHOD

Research Design for Studying AI Adoption in Multinational Retail Contexts

Researching AI adoption in multinational retail contexts requires methodological rigor to capture both the complexity of technological integration and the diversity of operating environments. Among the most effective designs are case study research, longitudinal studies, and mixed method approaches. Case study research enables an in depth analysis of AI adoption across varied retail environments, revealing the contextual nuances and strategic decisions influencing success. Pantano & Scarpi (2022) demonstrated how qualitative case methodologies could unpack consumer responses to AI, illustrating their role in reshaping retail customer experiences. Similarly, Dutta (2024) showcased how individualized omnichannel strategies driven by generative AI require context specific analysis to evaluate effectiveness.

Multi Case Qualitative Analysis for Measuring AI Related Performance Outcomes

The qualitative component involved four multinational retailers selected based on diversity of market regions (North America, Europe, and Asia) and varying maturity levels of AI adoption. Data were collected from company reports, executive interviews, and industry publications between 2019–2024. Thematic analysis was applied to identify cross-case patterns and variancess.

Reliable Data Sources and Benchmarks for Evaluating AI Scaling Success in Retail

Robust evaluation of AI scaling success relies on high quality data and well defined benchmarks. Key sources include customer feedback systems, operational metrics, and sales performance data. Ameen et al. (2021) identified customer satisfaction scales and engagement metrics as reliable tools for assessing AI's impact in e retailing environments. Platform analytics from digital commerce systems provide real time insights into performance trends and AI driven operational changes. Olutimehin et al. (2024) emphasized combining internal metrics such as sales growth, retention rates, and cost efficiency with external industry benchmarks for a more comprehensive evaluation. Wang et al. (2024) underscored the value of clear KPIs, including customer response times and churn rates, in determining AI's strategic effectiveness.

Methodological Concerns and Contextual Considerations

Triangulation was applied by integrating qualitative insights, longitudinal evidence, and quantitative metrics to enhance reliability. Coding validity in qualitative data was ensured through inter-coder checks, while regression outputs were cross-validated with benchmark datasets. Contextualization was also emphasized by considering regional differences in infrastructure, regulation, and consumer attitudes.

Strategic Roadmapping for Emerging Technologies: Lessons from AI Adoption in the Retail Sector.

RESULT AND DISCUSSION

Phased AI Adoption Models

Phased AI adoption models create a deliberate, step by step approach for integrating AI into retail operations, ensuring that organizations can systematically progress from exploratory initiatives to mature, enterprise wide adoption. The Technology Adoption Model (TAM) outlines three key stages awareness, validation, and implementation as a foundation for adoption planning (Fu et al., 2023). Li and Kang (2025) expand on this by offering a maturity framework with incremental capability levels, enabling multinational retailers to assess their current AI readiness, benchmark against competitors, and adapt strategies to varied market dynamics. This model is particularly effective in multinational contexts where market maturity, consumer preferences, and regulatory environments differ across regions.

	Table 1. Exam	le of Phased	AI Adoption	Roadmap
--	---------------	--------------	-------------	---------

Phase	Description	Example Activities	Key Deliverables	
Awareness	Recognizing AI	Market research,	AI opportunity	
	potential and strategic	leadership workshops,	assessment, preliminary	
	value	vendor evaluations	roadmap	
Validation	Testing feasibility and	Pilot projects, small scale	Pilot reports, feasibility	
	business fit	trials, ROI projections	analysis	
Implementati	Scaling across	Full integration into	Enterprise AI	
on	operations with	workflows, KPI tracking,	deployment plan,	
	governance in place	staff training	performance dashboards	

Defining and Measuring KPI Milestones

KPIs must directly reflect business objectives and be tracked over consistent time intervals to provide actionable insights. Dutta (2024) identifies engagement rates, AI attributable sales growth, and operational efficiency metrics as key measures. Incorporating both leading indicators (e.g., adoption rate, system uptime) and lagging indicators (e.g., margin improvement) ensures comprehensive evaluation.

Table 2. Sample KPI Milestones in AI Adoption

KPI Category	Metric	Target	Measurement
		Benchmark	Frequency
Customer	Click through rate on AI	+15% over	Monthly
Engagement	recommendations	baseline	
Sales Growth	Incremental revenue from AI	+8% YoY	Quarterly
	campaigns		
Operational	Reduction in stockouts (%)	20%	Monthly
Efficiency			
Adoption Rate	% of teams actively using AI	85%+	Quarterly
	tools		

Governance Mechanisms in AI Roadmaps

Governance ensures compliance, ethical AI usage, and alignment with organizational values. Essential components include AI ethics committees, regulatory compliance protocols, bias and fairness audits, and risk management systems. Li and Kang (2025) emphasize that organizations with such frameworks are better positioned to adapt to evolving legal and market demands. Continuous governance practices such as annual policy reviews and real time monitoring support long term trust and operational alignment (Fu et al., 2023).

Transitioning from Pilot to Full Scale Deployment

The shift from pilot programs to enterprise scale deployment requires thorough planning, including technical scaling, process redesign, and change management. Kim & Choi (2024) found that organizations leveraging pilot insights such as user feedback and performance data experience

smoother scaling. Infrastructure investments, role specific training, and cultural readiness initiatives all contribute to successful transitions.

Multinational Retailers Reporting Measurable Outcomes

Retail leaders are demonstrating measurable performance improvements from AI adoption. Walmart employs AI based inventory forecasting to reduce overstock and understock, directly lowering costs (Sharma et al., 2023). Amazon's AI driven recommendation systems significantly boost conversion rates and average order values, while IKEA's AR applications enhance customer engagement and loyalty.

Company AI Focus Area **Key Initiative** Outcome Walmart demand Reduced over/understock, cost Inventory ΑI forecasting prediction savings Personalized Amazon Recommendation Higher conversion rates, engines product suggestions increased AOV **IKEA** Augmented reality Immersive Enhanced customer engagement, room visualization increased basket size Data centric Integrated analytics Unified data Real time decision making, retailer lakehouse operational agility

Table 3. Case Study Highlights

Strategic Differences in AI Focus Areas

AR initiatives (e.g., IKEA) focus on enhancing customer experience, AI agents Butt & Ahmad (2025) target operational efficiency in service, and data centric systems optimize enterprise decision making.

Influence of AI Use Case on Adoption Speed and ROI

Customer facing use cases such as personalization generally deliver faster ROI and adoption due to visible consumer impact (Devarapalli, 2025). Backend applications such as supply chain optimization require greater upfront investment but yield long term efficiency gains.

Role of Change Management in AI Adoption

Ebrahim and Shahzad (2025) emphasize that change management including transparent communication, comprehensive training, and leadership sponsorship reduces employee resistance and boosts utilization.

Quantitative Evidence of AI's Impact on Revenue, Margin, and Efficiency

Studies show that AI driven pricing optimization improves gross margins by 10–15% (Kim & Choi, 2024). Personalization strategies can drive revenue growth exceeding 30% in some retail categories (Vėželis & Gopal, 2024). AI enhanced demand forecasting reduces stockouts, minimizes waste, and improves supply chain reliability.

Table 4. Comparative ROI of AI Use Cases

Use Case	ROI (%)	Primary Benefit	Example
Personalization	Up to 300	Increased sales and	Targeted promotions with AI
		loyalty	recommendations
Forecasting	Moderate,	Reduced waste,	AI demand forecasting in grocery
	steady	improved planning	retail
Loss prevention	High	Significant cost savings	CV based shrink detection in self-
(CV)			checkout

Longitudinal Data Supporting Sustained AI Benefits

Evidence from longitudinal studies shows that sustained AI investments deliver compounding benefits over time. Target and other major retailers report steady improvements in turnover rates, customer satisfaction, and profit margins years after initial AI implementation (Shadreck et al., 2024).

External Factors Affecting AI Outcomes

Macroeconomic conditions, consumer sentiment, and regulatory landscapes shape AI ROI timelines. Economic downturns can temporarily suppress revenue benefits despite operational gains (Kunin & Peshko, 2023). Strong privacy regulations (Kolar et al., 2024) may delay rollout but can build lasting consumer trust.

Critical Enablers for Scaling AI in Retail While Maintaining Governance and Compliance

The findings highlight that successful AI scaling in retail requires governance, change management, cross-functional collaboration, and robust data stewardship. Theoretically, this extends the Technology–Organization–Environment (TOE) framework by emphasizing governance and ethical compliance as integral environmental factors shaping adoption (ElSayad & Mamdouh, 2024). This theoretical refinement contributes to adoption literature by linking ethical AI governance with organizational readiness.

Change management is equally critical. AI scaling often transforms workflows and job roles, which can lead to uncertainty or resistance among employees. Structured strategies that include tailored training programs, continuous communication, and visible leadership commitment help mitigate these challenges (Heins, 2022). Embedding a culture that embraces innovation and calculated risk taking enables organizations to adapt more rapidly to technological change and seize emerging opportunities.

Cross-functional collaboration also extends prior adoption theories by showing that interdisciplinary integration is a determinant of scaling success. This aligns with recent literature on socio-technical systems, where the interaction between technological and human actors determines sustainable adoption.

Data management and quality assurance are foundational to governance. Poor data quality can undermine AI accuracy, introduce bias, and create compliance risks. Calvo et al. (2023) emphasize that enforcing strong data governance covering data lineage, validation, and representativeness not only improves AI performance but also builds resilience against regulatory scrutiny.

Risks Like Model Drift and Bias in Large Scale AI Systems

Two major technical risks in scaling AI are model drift and bias. Model drift occurs when AI predictions lose accuracy over time due to shifts in consumer behavior, market conditions, or other external factors (Mahroof, 2019). Without continuous monitoring and recalibration, such drift can erode the business value of AI systems. Bias, meanwhile, arises from imbalanced or incomplete training data, potentially leading to inequitable treatment of customers (Bhuiyan, 2024).

To address these risks, retailers can:

- Implement continuous model evaluation cycles with automatic alerts for performance degradation.
- Conduct fairness audits, ensuring datasets reflect diverse customer demographics.
- Enhance algorithmic transparency so that AI driven decisions are explainable to both regulators and end users (Baker et al., 2021).
- Introduce governance checkpoints during each deployment phase to validate ethical compliance.

Strategies to Mitigate Talent and Infrastructure Gaps During AI Scaling

Talent shortages and infrastructure limitations are among the biggest barriers to AI scaling. Mitigation strategies include:

- Upskilling and Reskilling: Targeted training programs focused on AI literacy, data science skills, and ethical AI usage (J. Chen & Chang, 2023).
- Strategic Partnerships: Collaborations with AI vendors, consultancy firms, and academic institutions to access specialized expertise and innovation pipelines (Pizzi et al., 2021).
- Infrastructure Modernization: Phased upgrades to support scalable, cloud enabled, and flexible data architectures capable of handling increasing volumes and complexity (Mahroof, 2019).
- Continuous Learning Culture: Fostering an environment where employees actively explore emerging AI tools and share knowledge, thereby reducing dependence on external hires (Heins, 2022).

Such measures ensure that AI systems are not only implemented effectively but are also sustainable in the long term, even as the technological landscape evolves.

Transferring Lessons from Retail AI Adoption to Other Industries

The principles learned from retail AI adoption governance rigor, bias mitigation, agile change management can be adapted to sectors such as healthcare, finance, manufacturing, and education. Healthcare and finance, for instance, face similarly stringent data privacy regulations; adopting retail's emphasis on transparency and stakeholder trust can facilitate smoother AI integration (Querci et al., 2022). Education and public services can borrow retail's customer feedback loops to gauge acceptance and refine AI tools for greater impact (ElSayad & Mamdouh, 2024).

Retail's dual approach to closing talent and infrastructure gaps balancing internal training with external collaboration offers a blueprint for industries like manufacturing, where skill shortages and outdated systems often slow innovation (Calac et al., 2025).

Despite its contributions, this study has limitations. The focus on four multinational cases limits generalizability, and the reliance on secondary data may constrain the depth of contextual insights. Future studies should expand to SMEs, adopt experimental designs, or explore sectoral comparisons such as healthcare or manufacturing.

CONCLUSION

This study demonstrates that the strategic roadmapping of AI adoption in retail hinges on three interrelated dimensions: governance, organizational readiness, and change management. By explicitly integrating these elements into the Technology–Organization–Environment (TOE) framework, the research extends existing theory by positioning governance and ethical compliance as critical environmental determinants. The findings show that phased adoption models, measurable KPI milestones, and cross-functional collaboration not only enhance operational efficiency and customer engagement but also sustain adoption momentum. Importantly, this study provides empirical evidence that governance mechanisms and leadership-driven change management practices are decisive in overcoming barriers such as talent shortages, legacy systems, and ethical risks.

Beyond its managerial implications, the research contributes by reframing AI adoption as both a technological and organizational transformation that requires continuous monitoring and cultural adaptation. While the scope was limited to four multinational cases, the insights are transferable to other industries facing similar regulatory and operational complexities. Future research should broaden the scope by examining small and medium enterprises (SMEs), applying comparative cross-industry designs, and exploring emerging analytical methods such as AI governance audits and socio-technical modeling. By doing so, scholars and practitioners can further refine strategic roadmaps that balance rapid innovation with ethical responsibility, ensuring AI adoption delivers sustainable and equitable value across sectors.

REFERENCE

Abraham, S. (2023). The Future of Fashion Is Here: Integration of AI in Marketing Practices of Leading Fashion Retail Businesses. https://doi.org/10.32920/23979297

Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer Experiences in the Age of Artificial Intelligence. *Computers in Human Behavior*, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548

- Baral, M. M., Chittipaka, V., Pal, S. K., Mukherjee, S., & Shyam, H. S. (2023). Investigating the Factors of Blockchain Technology Influencing Food Retail Supply Chain Management: A Study Using TOE Framework. *Statistics in Transition New Series*, 24(5), 129–146. https://doi.org/10.59170/stattrans-2023-067
- Bhuiyan, M. S. (2024). The Role of AI-Enhanced Personalization in Customer Experiences. *Journal of Computer Science and Technology Studies*, 6(1), 162–169. https://doi.org/10.32996/jcsts.2024.6.1.17
- Butt, A. H., & Ahmad, H. (2025). AI-powered Medical Vending Machines (MVMs) Services: The Future of Retail Health Care in Post-Covid Era. *Journal of Science and Technology Policy Management*. https://doi.org/10.1108/jstpm-09-2024-0347
- Calvo, A. V. C., Valdez, A. D. F., & Frasquet, M. (2023). The Role of Artificial Intelligence In improving the Omnichannel Customer Experience. *International Journal of Retail & Distribution Management*, 51(9/10), 1174–1194. https://doi.org/10.1108/ijrdm-12-2022-0493
- Chen, H., Li, L., & Chen, Y. (2020). Explore Success Factors That Impact Artificial Intelligence Adoption on Telecom Industry in China. *Journal of Management Analytics*, 8(1), 36–68. https://doi.org/10.1080/23270012.2020.1852895
- Chen, J., & Chang, Y. (2023). How Smart Technology Empowers Consumers in Smart Retail Stores? The Perspective of Technology Readiness and Situational Factors. *Electronic Markets*, *33*(1). https://doi.org/10.1007/s12525-023-00635-6
- Devarapalli, C. A. (2025). Artificial Intelligence: Revolutionizing the Future of Retail. *Journal of Global Economy Business and Finance*, 7(4), 1–5. https://doi.org/10.53469/jgebf.2025.07(04).01
- Dixon, R. B. L. (2022). A Principled Governance for Emerging AI Regimes: Lessons From China, the European Union, and the United States. *Ai and Ethics*, *3*(3), 793–810. https://doi.org/10.1007/s43681-022-00205-0
- Dutta, S. (2024). Revolutionizing Retail: An Empirical Study on the Impact of Generative AI in Omnichannel Strategies. *International Journal for Multidisciplinary Research*, 6(5). https://doi.org/10.36948/ijfmr.2024.v06i05.28799
- Ebrahim, S., & Shahzad, M. A. (2025). Evaluating the Impact of Artificial Intelligence on Recruitment Operations in Bahrain's Retail Sector. *Ijgrit*, 02(04), 179–184. https://doi.org/10.62823/ijgrit/02.04.7082
- ElSayad, G., & Mamdouh, H. (2024). Are Young Adult Consumers Ready to Be Intelligent Shoppers? The Importance of Perceived Trust and the Usefulness of AI-powered Retail

- Platforms in Shaping Purchase Intention. Young Consumers Insight and Ideas for Responsible Marketers, 25(6), 969–989. https://doi.org/10.1108/yc-02-2024-1991
- Flavián, C., Pérez-Rueda, A., Belanche, D., & Casaló, L. V. (2021). Intention to Use Analytical Artificial Intelligence (AI) in Services The Effect of Technology Readiness and Awareness. *Journal of Service Management*, *33*(2), 293–320. https://doi.org/10.1108/josm-10-2020-0378
- Fu, H., Chang, T., Lin, S., Teng, Y.-H., & Huang, Y. (2023). Evaluation and Adoption Of artificial Intelligence In the retail Industry. *International Journal of Retail & Distribution Management*, 51(6), 773–790. https://doi.org/10.1108/ijrdm-12-2021-0610
- Heins, C. (2022). Artificial Intelligence in Retail A Systematic Literature Review. *Foresight*, 25(2), 264–286. https://doi.org/10.1108/fs-10-2021-0210
- Horani, O. M., Al-Adwan, A. S., Yaseen, H., Hmoud, H., Al-Rahmi, W. M., & Alkhalifah, A. (2023). The Critical Determinants Impacting Artificial Intelligence Adoption at the Organizational Level. *Information Development*. https://doi.org/10.1177/02666669231166889
- Jatobá, M. N., Ferreira, J. J., Fernandes, P. O., & Teixeira, J. P. (2023). Intelligent Human Resources For the adoption of Artificial Intelligence: A systematic Literature Review. *Journal of Organizational Change Management*, 36(7), 1099–1124. https://doi.org/10.1108/jocm-03-2022-0075
- Kaur, K., Bedi, M., & Singh, R. (2022). Impact of Artificial Intelligence on Customer Loyalty in the Indian Retail Industry. 26–39. https://doi.org/10.4018/978-1-7998-7959-6.ch002
- Kim, J.-Y., & Choi, G. (2024). Assessing the Impact of Generative Artificial Intelligence on Customer Engagement in Business-to-Customer Scenarios. *Asia-Pacific Journal of Convergent Research Interchange*, 10(2), 89–104. https://doi.org/10.47116/apjcri.2024.02.09
- Kolar, N., Milfelner, B., & Pisnik, A. (2024). Factors for Customers' AI Use Readiness in Physical Retail Stores: The Interplay of Consumer Attitudes and Gender Differences. *Information*, *15*(6), 346. https://doi.org/10.3390/info15060346
- Kunin, V. A., & Peshko, S. I. (2023). Forecasting of Financial Risks of Decline in Profit and Profitability of Companies in the Retail Industry on the Basis of Correlation and Regression Analysis of Macroeconomic Factors. *Economics and Management*, 29(6), 690–708. https://doi.org/10.35854/1998-1627-2023-6-690-708
- Li, J., & Kang, J. (2025). Human-Centred AI vs Machine-Centred AI: Navigating AI Ethical Crises in Luxury Retail. *International Journal of Retail & Distribution Management*, *53*(7), 639–653. https://doi.org/10.1108/ijrdm-11-2024-0600

- Mahroof, K. (2019). A Human-Centric Perspective Exploring the Readiness Towards Smart Warehousing: The Case of a Large Retail Distribution Warehouse. *International Journal of Information Management*, 45, 176–190. https://doi.org/10.1016/j.ijinfomgt.2018.11.008
- Olsson, A., Paredes, K. M. B., Johansson, U., Roese, M. O., & Ritzén, S. (2019). Organizational Climate for Innovation and Creativity A Study in Swedish Retail Organizations. *The International Review of Retail Distribution and Consumer Research*, 29(3), 243–261. https://doi.org/10.1080/09593969.2019.1598470
- Olutimehin, D. O., Ofodile, O. C., Ejibe, I., Odunaiya, O. G., & Soyombo, O. T. (2024). Implementing Ai in Business Models: Strategies for Efficiency and Innovation. *International Journal of Management & Entrepreneurship Research*, 6(3), 863–877. https://doi.org/10.51594/ijmer.v6i3.940
- Pantano, E., & Scarpi, D. (2022). I, Robot, You, Consumer: Measuring Artificial Intelligence Types and Their Effect on Consumers Emotions in Service. *Journal of Service Research*, 25(4), 583–600. https://doi.org/10.1177/10946705221103538
- Patil, D., Rane, N. L., & Rane, J. (2024). Future Directions for ChatGPT and Generative Artificial Intelligence in Various Business Sectors. https://doi.org/10.70593/978-81-981367-8-7_7
- Pizzi, G., Scarpi, D., & Pantano, E. (2021). Artificial Intelligence and the New Forms of Interaction: Who Has the Control When Interacting With a Chatbot? *Journal of Business Research*, 129, 878–890. https://doi.org/10.1016/j.jbusres.2020.11.006
- Querci, I., Barbarossa, C., Romani, S., & Ricotta, F. (2022). Explaining How Algorithms Work Reduces Consumers' Concerns Regarding the Collection of Personal Data and Promotes AI Technology Adoption. *Psychology and Marketing*, *39*(10), 1888–1901. https://doi.org/10.1002/mar.21705
- Shadreck, N., Liberty, D., Tinotenda, N. M., Kuvenga, A., Munyaradzi, S. M., & Mazvazva, C. (2024). Impact of Artificial Intelligence Applications on Profitability of Large-Scale Retailers in Gweru Urban, Zimbabwe. *European Journal of Theoretical and Applied Sciences*, 2(5), 234–253. https://doi.org/10.59324/ejtas.2024.2(5).24
- Sharma, M., Shail, H., Painuly, P. K., & Kumar, A. V. S. (2023). AI-Powered Technologies Used in Online Fashion Retail for Sustainable Business. 538–561. https://doi.org/10.4018/979-8-3693-0019-0.ch028
- Vėželis, P., & Gopal, G. (2024). Adoption of Artificial Intelligence Tools by Retail Organisations. *ISCM*, 6(3), 232. https://doi.org/10.69554/jcej7210
- Wang, S., Song, Y., & Zhang, W. (2024). A Study on the Impact of Digital Transformation on Green Resilience in China. *Sustainability*, 16(5), 2189. https://doi.org/10.3390/su16052189