Moneta: Journal of Economics and Finance

E-ISSN: 3030-8666

Volume. 3 Issue 3 July 2025

Page No: 216-232

Carbon Pricing as a Climate Policy Instrument: Global Lessons, Challenges, and Future Directions

Hilman Rismanto¹, Putri Ayu Lestari² ¹Universitas Garut, Indonesia ²Universitas Sahid, Indonesia

Correspondent: Hilmanris@uniga.ac.id1

Received : June 2, 2025 Accepted : July 19, 2025

Published: July 31, 2025

Citation: Rismanto, H., Lestari, P, A. (2025). Carbon Pricing as a Climate Policy Instrument: Global Lessons, Challenges, and Future Directions. Moneta: Journal of Economics and Finance, 3(3), 216-232.

ABSTRACT: Carbon pricing has become a central instrument in global strategies to mitigate climate change, yet its economic, social, and environmental implications remain contested. This study provides a narrative review synthesizing literature from Scopus, Web of Science, and Google Scholar to evaluate the effectiveness of carbon pricing mechanisms. Keywords including carbon tax, emissions trading systems, carbon pricing mechanisms, and economic implications guided the selection of peer-reviewed studies published between 2000 and 2025. Inclusion criteria focused on research addressing economic growth, innovation, social equity, and environmental outcomes across developed and developing contexts. Results show that carbon pricing fosters green innovation, reduces emissions in energy and transport, and generates fiscal revenues that can finance social and environmental programs. However, outcomes vary significantly: industries with high resource dependence face cost burdens, low-income households are disproportionately affected, and developing countries struggle with institutional weaknesses and carbon leakage. Comparative analysis demonstrates that both carbon taxes and cap-and-trade systems can be effective when complemented by redistributive mechanisms, strong institutions, and integration with broader policy frameworks. The discussion highlights systemic political, economic, and institutional factors that influence success and identifies gaps in longitudinal and social impact research. Findings suggest that well-designed carbon pricing can balance mitigation and equity objectives, but future research must expand comparative analyses and explore hybrid policy models. The study underscores carbon pricing as an indispensable yet context-sensitive tool for achieving sustainable low-carbon transitions.

Keywords: Carbon Pricing, Carbon Tax, Emissions Trading System, Economic Implications, Climate Change Mitigation, Social Equity, Green Innovation.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

Carbon pricing has emerged as one of the most prominent market-based instruments in the global effort to mitigate greenhouse gas (GHG) emissions. Recognized by international organizations and a growing body of scholarly work, carbon pricing seeks to internalize the external costs of carbon pollution by assigning a monetary value to emissions, thereby incentivizing both producers

and consumers to adopt cleaner practices (Wang et al., 2025; Abrell et al., 2022). Two dominant mechanisms characterize the policy landscape: carbon taxes and emissions trading systems (ETS). Carbon taxes impose a direct cost on each ton of carbon dioxide emitted, while ETS allocates tradable permits to firms, allowing the market to establish prices based on supply and demand dynamics (Falanga et al., 2025; Mengesha & Roy, 2025). Scandinavian countries offer notable examples of carbon taxation, whereas the European Union and select U.S. states have established robust ETS frameworks (Grottera et al., 2022). The diversity of these policy mechanisms reflects the heterogeneity of national economic structures, industrial bases, and political will, which in turn shape implementation strategies and outcomes (Grubb et al., 2023; Al-Abdulqader et al., 2025).

The urgency of carbon pricing is heightened by global emission trajectories. Despite decades of international negotiations and mitigation commitments, carbon emissions have continued to rise, with particularly sharp increases in emerging economies undergoing rapid industrialization (Al-Abdulqader et al., 2025; Aghion et al., 2019). Studies demonstrate that countries implementing carbon pricing regimes tend to experience more pronounced reductions in emissions compared with those that abstain from such policies (Amin et al., 2024; Saraji et al., 2025). Yet, persistent challenges such as "carbon leakage," whereby firms relocate to jurisdictions with weaker regulations, threaten to undermine the environmental integrity of these measures (Su & Wang, 2024; Bistline & Rose, 2018). This dual reality underscores the complexity of designing carbon pricing mechanisms that are both environmentally effective and economically resilient.

At a foundational level, the effectiveness of carbon pricing depends on both the level of the price and the responsiveness of economic actors to associated incentives. Evidence suggests that higher carbon prices catalyze investment in renewable energy technologies and encourage behavioral shifts in energy consumption (Grubb et al., 2023; Metcalf, 2023). By triggering tipping points in energy systems, adequately high carbon prices have been linked to accelerated decarbonization pathways (Mengesha & Roy, 2025). Beyond emissions reduction, carbon pricing can also mobilize significant fiscal resources, which governments can channel toward climate adaptation, renewable energy infrastructure, or social safety nets, thereby reinforcing its potential as a multidimensional policy tool (Abrell et al., 2022; Al-Abdulqader et al., 2025). Empirical evaluations increasingly point to the synergies between carbon pricing and complementary regulatory frameworks in amplifying climate mitigation outcomes.

Nevertheless, significant challenges remain, particularly in reconciling environmental goals with socio-economic realities. In developing countries, weak administrative capacity, limited institutional infrastructure, and political uncertainty constrain the ability to implement and enforce carbon pricing effectively (Al-Abdulqader et al., 2025; Cocker, 2025). Such constraints undermine investor confidence and impede private sector participation in carbon markets (Skovgaard & Asselt, 2019). Conversely, while developed countries are often better equipped to adopt these mechanisms, they grapple with issues of political contestation and equity. Carbon pricing has been criticized for its regressive distributional effects, as low-income households spend a disproportionate share of their income on carbon-intensive goods (Mengesha & Roy, 2025; Sommer et al., 2022). Public opposition rooted in concerns about inequality poses a recurring political challenge to the durability of these policies.

Another persistent challenge lies in the risk of carbon leakage. Developing countries, in particular, are vulnerable to the relocation of carbon-intensive industries, as stricter environmental policies create incentives for firms to shift production to regions with laxer standards (Su & Wang, 2024). This phenomenon not only undermines national mitigation efforts but also distorts global trade and investment patterns. For these countries, balancing economic growth imperatives with environmental objectives remains a formidable policy dilemma (Springmann et al., 2018; Amin et al., 2024). Developed countries face their own obstacles, including debates over revenue recycling mechanisms and the political feasibility of redistributive measures, which are critical to ensuring public acceptance of carbon pricing frameworks (Sommer et al., 2022).

Despite the proliferation of research on carbon pricing, significant gaps persist in the literature. Much of the scholarship has focused narrowly on the direct emission-reduction impacts of carbon pricing, with less attention given to long-term implications for global and local economic growth (Köppl & Schratzenstaller, 2022). Questions remain regarding the extent to which carbon pricing fosters innovation and investment in low-carbon technologies and how these dynamics translate into sustained economic transformation (Hwang et al., 2023). Additionally, while redistributive effects have been explored in some contexts, the interaction of carbon pricing with broader fiscal and social policies remains underexamined (Grubb et al., 2023; Mayanti et al., 2024). Regional disparities further complicate assessments, as the socio-economic and institutional characteristics of countries vary widely, influencing both the design and effectiveness of carbon pricing policies (Grottera et al., 2022).

This review seeks to address these gaps by critically examining the economic implications of carbon pricing, with particular emphasis on its role as a climate change mitigation strategy. The central objectives are to evaluate the effectiveness of different carbon pricing mechanisms, assess their distributional consequences, and explore their interaction with innovation and technological transformation. By synthesizing insights across diverse contexts, the study aims to provide a nuanced understanding of carbon pricing not only as an environmental policy tool but also as a driver of systemic economic and social change (Mengesha & Roy, 2025; Thamrin et al., 2025).

Geographically, the review spans a wide array of jurisdictions, including the European Union, which has implemented the world's most established ETS; North America, where subnational initiatives such as California's cap-and-trade system demonstrate varied approaches; Asia, where China's nascent carbon markets highlight the challenges of coal dependence and infrastructural limitations; and developing economies, where institutional capacity and growth imperatives shape the feasibility of carbon pricing (Falanga et al., 2025; Hwang et al., 2023; Su & Wang, 2024). By situating carbon pricing within these diverse political, economic, and social contexts, the study underscores the importance of tailoring policy design to local conditions while recognizing the global interconnectedness of carbon markets. Ultimately, this review contributes to the broader debate on how market mechanisms can advance both climate and development goals, offering insights for scholars, policymakers, and practitioners seeking to navigate the complex trade-offs inherent in carbon pricing.

METHOD

The methodological approach adopted in this study was designed to ensure a comprehensive and systematic collection, selection, and evaluation of literature on carbon pricing and its economic implications. The methodology prioritizes credibility, transparency, and replicability, consistent with the standards of high-impact international journals. Given the breadth and complexity of the subject matter, the methodological process encompassed multiple stages: database selection, keyword identification, inclusion and exclusion criteria establishment, research design categorization, and systematic screening and evaluation of studies. Each stage was carefully structured to guarantee the integration of robust evidence that reflects both global diversity and disciplinary rigor.

The first stage of this research consisted of determining the most suitable academic databases to source relevant literature. Scopus and Web of Science were selected as the primary databases, as both are internationally recognized for their extensive indexing of peer-reviewed journals and their ability to provide robust citation tracking. These platforms offer access to a vast range of scholarly works across economics, environmental science, and policy studies, which are critical fields for examining carbon pricing mechanisms. In addition, Google Scholar was incorporated to complement the searches conducted in Scopus and Web of Science, offering a broader scope by including conference proceedings, policy briefs, working papers, and other forms of scholarly communication that may not be indexed in more formal databases. This multi-database approach allowed the research to capture not only high-quality peer-reviewed journal articles but also grey literature that enriches the analysis of real-world applications and policy debates.

The second stage involved developing a rigorous keyword strategy tailored to maximize both sensitivity and specificity in the literature search. Based on prior studies and exploratory searches, a set of core keywords was established: "carbon tax," "emissions trading system (ETS)," "carbon pricing mechanism," and "economic implications of carbon pricing." These terms were selected to capture the breadth of scholarship on the subject while maintaining focus on economic dimensions. Boolean operators such as AND, OR, and NOT were strategically employed to refine the search. For instance, "carbon tax AND economic growth" yielded results focused on fiscal policy impacts, whereas "emissions trading system AND innovation" captured literature analyzing the technological effects of ETS schemes. Synonyms and related terms such as "pollution tax," "cap-and-trade," "climate policy," and "green economy" were also incorporated to ensure inclusivity and to avoid overlooking relevant studies that may use varying terminology. This combination of precise and broad keyword strategies strengthened the comprehensiveness and reliability of the literature corpus.

After identifying potential studies, the third stage established clear inclusion and exclusion criteria to guide the selection process. The inclusion criteria stipulated that only peer-reviewed articles, book chapters, and reputable reports published between 2000 and 2025 were considered, ensuring both historical breadth and contemporary relevance. The selected works were required to address carbon pricing mechanisms in relation to economic outcomes, such as macroeconomic growth, fiscal revenues, technological innovation, or social equity. Studies focusing on both developed and developing countries were included to reflect diverse geographic contexts, given the different institutional, political, and industrial realities influencing the effectiveness of carbon pricing.

Conversely, exclusion criteria eliminated sources that did not address economic dimensions directly, such as purely technical engineering studies, as well as publications that lacked methodological transparency or empirical grounding. Articles not written in English were excluded to maintain consistency and facilitate the synthesis of findings.

In terms of research design, the study adopted a wide lens to incorporate multiple types of empirical evidence. Experimental designs such as randomized controlled trials are rare in climate policy research due to ethical and practical limitations; thus, this review included observational studies, case studies, econometric analyses, simulation models, and comparative policy evaluations. Studies using quantitative techniques, such as econometric modeling and general equilibrium analysis, provided evidence on macroeconomic impacts, including GDP growth, employment, and trade flows. Case studies and qualitative analyses, on the other hand, offered nuanced insights into political dynamics, public perceptions, and institutional capacities that shape the implementation of carbon pricing. Including such a variety of research designs ensured a multidimensional perspective, combining statistical rigor with contextual richness. This pluralistic methodological orientation aligns with calls in climate policy scholarship for integrating diverse forms of evidence to address the complexity of mitigation strategies.

The literature selection process unfolded in several stages. First, an initial pool of references was generated from each database using the keyword strategy. Duplicate entries were removed, after which titles and abstracts were screened for relevance to the research objectives. At this stage, studies that clearly did not align with the inclusion criteria, such as those focusing exclusively on unrelated environmental instruments or technical energy efficiency measures without an economic component, were excluded. For the remaining studies, full texts were retrieved and subjected to a detailed review. This process involved evaluating methodological quality, research design, and the robustness of findings. Each article was assessed based on criteria such as clarity of objectives, transparency of methods, appropriateness of analytical frameworks, and the validity of conclusions. Studies that failed to demonstrate adequate methodological rigor were excluded to preserve the integrity of the evidence base.

Particular attention was paid to identifying literature that provided data on the economic consequences of carbon pricing across different contexts. This included analyses of the direct impacts of carbon taxation on energy markets and household expenditure, evaluations of emissions trading schemes in promoting cost efficiency and innovation, and cross-country comparisons of how political economy factors mediate outcomes. For example, empirical analyses of Scandinavian carbon taxes offered insights into long-term environmental and economic effects, while evaluations of the European Union ETS highlighted the role of institutional capacity and regulatory design in achieving emission reductions at manageable costs (Falanga et al., 2025; Grubb et al., 2023). At the same time, studies of carbon pricing in emerging economies shed light on the challenges of administrative capacity, political instability, and equity concerns (Al-Abdulqader et al., 2025; Springmann et al., 2018). These diverse bodies of evidence were synthesized to provide a holistic understanding of both the opportunities and constraints inherent in carbon pricing policies.

To further enhance the reliability of the review, triangulation was applied across sources, methods, and contexts. By comparing findings from quantitative econometric analyses, qualitative case studies, and policy evaluations across different jurisdictions, the methodology ensured that conclusions did not rest on isolated evidence but rather on converging patterns across multiple lines of inquiry. This approach also allowed the review to highlight divergences in the literature, such as contrasting findings on the regressivity of carbon taxes or the role of revenue recycling in mitigating distributional impacts. Identifying such areas of debate was essential for delineating the boundaries of current knowledge and for signaling directions for future research.

In sum, this methodological framework was carefully designed to capture a comprehensive, balanced, and critical overview of existing literature on carbon pricing and its economic implications. By combining multiple databases, adopting a robust keyword strategy, applying strict inclusion and exclusion criteria, incorporating diverse research designs, and ensuring systematic screening and evaluation, the study establishes a reliable foundation for subsequent analysis. This methodology reflects a commitment to academic rigor while remaining sensitive to the interdisciplinary and policy-relevant nature of the subject. The resulting evidence base provides the necessary grounding to assess carbon pricing as a central instrument in global climate change mitigation efforts and to explore its multifaceted implications for economic development, social equity, and environmental sustainability.

RESULT AND DISCUSSION

Economic Impacts

The economic impacts of carbon pricing are multifaceted, varying across industries and national contexts. Studies indicate that carbon pricing can generate contrasting effects depending on the characteristics of specific industrial sectors. In energy-intensive and automotive industries, carbon pricing often acts as a stimulus for innovation and energy efficiency, thereby enhancing competitiveness over time (Grubb et al., 2023; Al-Abdulqader et al., 2025). Evidence from emissions trading systems (ETS) demonstrates that such mechanisms can achieve significant emission reductions without imposing substantial negative consequences on economic growth, particularly when revenues are strategically reinvested in renewable energy sectors (Köppl & Schratzenstaller, 2022). This indicates that well-designed policies can facilitate structural economic transformation while maintaining overall growth trajectories.

By contrast, sectors reliant on raw materials or operating with thin profit margins face greater challenges. Small and medium-sized enterprises in these industries often encounter increased production costs that can constrain their growth potential (Thamrin et al., 2025; Salim & Mustapa, 2025). These findings underscore the heterogeneity of economic impacts across industries, where some sectors experience opportunities for expansion through technological upgrading, while others risk contraction due to heightened cost burdens. Nevertheless, several studies highlight the positive influence of carbon pricing on clean technology investments, emphasizing sector-specific sensitivities that determine outcomes (Saraji et al., 2025; Ewald et al., 2021).

Empirical evidence reinforces the link between carbon pricing and green technological innovation. By placing a cost on carbon emissions, firms are incentivized to allocate resources toward research, development, and deployment of clean technologies. Mengesha and Roy (2025) demonstrate that carbon pricing at sufficient thresholds stimulates fuel-switching among energy producers and accelerates the diffusion of low-carbon innovations. Econometric analyses in Europe reveal that higher carbon prices correlate with reductions in emissions while simultaneously driving innovation in energy storage, renewable integration, and efficiency enhancements (Fragkos & Fragkiadakis, 2022). Cross-sectoral studies further confirm that investments in clean technologies tend to increase proportionally with rising carbon prices, underscoring the role of pricing policies as catalysts for sustainable industrial innovation (Al-Abdulqader et al., 2025; Ling et al., 2021).

Social Impacts

The social implications of carbon pricing remain a central concern in policy design, particularly regarding its regressive distributional effects. Carbon pricing often leads to increased costs of basic goods such as energy and transportation, disproportionately affecting low-income households that allocate a larger share of their income to carbon-intensive consumption (Salim & Mustapa, 2025; Axon & Morrissey, 2020). This amplifies socioeconomic vulnerabilities and raises issues of equity that require targeted policy responses. Studies emphasize that without mitigation measures, carbon pricing risks exacerbating inequality, particularly in contexts where households already face financial constraints (Liu et al., 2018; Siegmeier et al., 2017).

Strategies to address these regressive effects are crucial for maintaining both equity and political feasibility. Direct subsidies to low-income households and tax rebates have been identified as effective mechanisms for offsetting increased expenditures attributable to carbon pricing (Rafieisakhaei & Barazandeh, 2017; Wong & Adam, 2022). Redistribution of revenues through income transfers or targeted energy subsidies has proven successful in various contexts, reducing the burden on vulnerable populations (Al-Abdulgader et al., 2025; Liu et al., 2018). The "tax-anddividend" model, where carbon pricing revenues are redistributed equally among citizens, has been shown to mitigate regressive effects and foster broader public support (Braga & Ernst, 2023; Köppl & Schratzenstaller, 2022). Case studies illustrate that transparent and equitable redistributive strategies strengthen social acceptance of carbon pricing while enhancing social justice outcomes (Salim & Mustapa, 2025; Ling et al., 2021).

Environmental Impacts

Carbon pricing has demonstrated measurable effectiveness in reducing emissions, particularly in the energy and transportation sectors. By increasing the cost of emitting carbon, these policies create incentives for fuel substitution, energy efficiency, and investment in renewable alternatives. Evidence from the European Union ETS indicates annual emission reductions of approximately 12% since implementation, underscoring the system's impact on the energy sector (Al-Abdulqader et al., 2025). In the transportation sector, carbon pricing has supported the development of

sustainable infrastructure and expanded public transit systems, with Ibitoye et al. (2024) noting positive shifts toward greener mobility options.

Cross-national evidence reinforces the relationship between rising carbon prices and declines in fossil fuel consumption. Sweden and Germany, for instance, have reported significant reductions in fossil fuel use alongside accelerated adoption of alternative energy sources under carbon pricing regimes (Falanga et al., 2025; Thamrin et al., 2025). In the United Kingdom, carbon pricing measures have stimulated the transition toward electric vehicles, with projections suggesting more than a 50% reduction in transport-related emissions by 2030 (Liu et al., 2018). These findings highlight the capacity of carbon pricing to drive systemic decarbonization when integrated into broader policy frameworks.

Nonetheless, implementation outcomes vary substantially between developed and developing nations. Developed countries, with stronger regulatory institutions and advanced technological capabilities, have leveraged carbon pricing to achieve sustained environmental improvements. Norway and France, for example, have reported consistent emissions reductions and air quality improvements following the imposition of robust carbon taxes and area-specific schemes (Wang et al., 2025; Salim & Mustapa, 2025). By contrast, developing nations frequently encounter structural obstacles such as inadequate infrastructure, weak enforcement mechanisms, and limited political support, which diminish the effectiveness of carbon pricing (Amin et al., 2024; Su & Wang, 2024). Carbon leakage remains a pervasive challenge, particularly in developing contexts where industries may relocate to less regulated jurisdictions, thereby undermining overall mitigation potential (Su & Wang, 2024).

Global Comparisons

Comparative analyses between cap-and-trade systems and carbon taxes highlight contextdependent advantages and limitations. In Europe, cap-and-trade has gained preference due to its flexibility and capacity to incentivize firm-level innovation, particularly in emission-intensive industries (Al-Abdulqader et al., 2025; Grubb et al., 2023). ETS frameworks enable firms to trade allowances, fostering cost-effective emission reductions while encouraging technological advancements. Conversely, carbon taxes offer price certainty, which is advantageous for economic planning and long-term investment strategies. Countries such as Canada and Sweden have demonstrated that carbon taxes can achieve emissions reductions without compromising economic growth, offering transparency that benefits both policymakers and consumers (Li et al., 2015; Ibitoye et al., 2024).

Cross-regional experiences provide valuable lessons on the determinants of policy effectiveness. Europe's strong regulatory framework and high environmental awareness have enabled both capand-trade and carbon taxes to significantly reduce emissions while supporting industrial adaptation (Sajjad et al., 2024; Salim & Mustapa, 2025). The United States, however, presents a more fragmented landscape, with state-level initiatives such as California's cap-and-trade system yielding positive results but facing broader political polarization that hampers nationwide implementation (Falanga et al., 2025; Metcalf, 2023). In Asia, China's emerging cap-and-trade system highlights

both potential and challenges, particularly its dependence on coal and infrastructural limitations that constrain its effectiveness (Su & Wang, 2024). These experiences underscore that policy success hinges not only on design but also on institutional capacity, public support, and alignment with complementary measures.

The comparative evidence underscores the importance of integrating carbon pricing with broader policy packages to enhance innovation and facilitate equitable transitions. Case studies demonstrate that when coupled with renewable energy subsidies, innovation incentives, and redistributive mechanisms, carbon pricing can yield more sustainable and inclusive outcomes (Chen et al., 2017; Axon & Morrissey, 2020). Thus, while carbon pricing remains a cornerstone of climate mitigation strategies, its effectiveness ultimately depends on nuanced policy design and the socio-political contexts in which it is implemented.

Carbon Pricing, Fiscal Policy, and Social Justice

The relationship between carbon pricing, fiscal policy, and social justice is both intricate and contested in contemporary scholarship. Carbon pricing generates significant fiscal revenues, which if strategically allocated, can serve as powerful tools for advancing both environmental sustainability and social equity. For instance, Springmann et al. (2018) argue that revenues from carbon taxes can be directed toward subsidizing energy costs for low-income households or financing mitigation programs, thereby reducing the regressive burden of higher energy prices. This redistributive potential positions carbon pricing not only as a climate mitigation instrument but also as a fiscal innovation that can bolster welfare systems. However, as highlighted in the results, the regressive nature of carbon pricing remains a critical challenge, particularly because households with limited financial resources spend a disproportionate share of their income on energy and transport (Al-Abdulqader et al., 2025; Bistline & Rose, 2018). This dual character of carbon pricing—progressive in its fiscal potential but regressive in its immediate impact underscores the necessity of deliberate policy design.

Scholars emphasize that fiscal frameworks accompanying carbon pricing play a decisive role in mediating its distributive consequences. Skovgaard and Asselt (2019) stress that careful attention to the fiscal architecture of carbon pricing is essential to ensure that the policy delivers equitable as well as effective outcomes. Equity considerations, in this context, are not merely normative but practical, as distributive fairness influences public acceptance and political viability (Siegmeier et al., 2017; Sommer et al., 2022). This aligns with evidence from revenue recycling mechanisms, such as tax-and-dividend schemes, that have proven to bolster public support while mitigating regressive impacts (Braga & Ernst, 2023). Integrating carbon pricing within broader redistributive and social policy frameworks thus emerges as a strategic imperative, ensuring that climate policies reinforce rather than undermine social justice (Sajjad et al., 2024).

Systemic Factors Influencing Implementation

The effectiveness of carbon pricing is heavily shaped by systemic factors, particularly political, economic, and institutional dimensions. Political dynamics frequently determine whether carbon pricing policies are sustained or derailed. Government commitment and leadership are critical, as policies of this nature often require long-term stability to build credibility with investors and foster public trust (Su & Wang, 2024). However, political instability or strong opposition from interest groups can obstruct policy advancement, as demonstrated in cases where partisan divisions stymied carbon tax proposals (Azargohar et al., 2021). Furthermore, public understanding of the benefits and trade-offs of carbon pricing is often limited, which can generate resistance and amplify populist backlash (Hu et al., 2023). This highlights the importance of public communication and transparency in fostering durable political support.

Economic conditions also significantly influence the success of carbon pricing initiatives. Countries experiencing robust macroeconomic growth may find it easier to implement carbon pricing because fiscal surpluses and investment opportunities provide a buffer against transitional costs. Conversely, economic downturns or recessions can reduce political appetite for carbon pricing, as governments prioritize short-term economic recovery over long-term sustainability (Rensburg et al., 2016; Li et al., 2024). This trade-off illustrates the need for policy frameworks that insulate climate policies from cyclical economic pressures, potentially through phased implementations or adaptive pricing mechanisms.

Institutional structures are equally pivotal in determining outcomes. Effective carbon pricing requires strong governance institutions capable of monitoring emissions, enforcing compliance, and redistributing revenues efficiently. Countries with limited administrative capacity often struggle with enforcement, creating opportunities for evasion or underreporting (Daskalakis et al., 2015). Conversely, jurisdictions with well-developed institutional infrastructures, such as the European Union, have demonstrated that stringent oversight and institutional coherence can enhance the effectiveness of emissions trading systems (Grubb et al., 2023). The institutional dimension thus reveals that carbon pricing is not a self-sufficient mechanism but one whose efficacy depends on the broader governance ecosystem in which it is embedded.

Linking Results to Broader Literature and Implications

The results of this review reinforce established findings while also extending current debates on carbon pricing. The evidence that carbon pricing stimulates green innovation and decarbonization in energy-intensive sectors supports earlier econometric studies showing strong correlations between rising carbon prices and technological advancement (Fragkos & Fragkiadakis, 2022; Mengesha & Roy, 2025). At the same time, the literature reveals sectoral divergences, with small and medium-sized enterprises in resource-intensive industries disproportionately burdened by higher production costs (Thamrin et al., 2025). This tension echoes broader discussions in environmental economics about the uneven distribution of costs and benefits, reinforcing the argument for complementary support policies tailored to vulnerable sectors.

Social impacts, particularly regressivity, remain consistent with longstanding critiques of carbon taxation as disproportionately affecting low-income households (Axon & Morrissey, 2020).

However, recent scholarship suggests that redistributive mechanisms can transform this weakness into a strength, enhancing both equity and legitimacy (Köppl & Schratzenstaller, 2022). This underscores the importance of designing carbon pricing not in isolation but as part of a larger package of fiscal and social interventions. The alignment of carbon pricing revenues with social justice objectives has the potential to generate political momentum, counter populist resistance, and enhance policy durability.

The environmental results reaffirm the effectiveness of carbon pricing in reducing emissions in both energy and transport sectors, consistent with long-term evidence from the European Union ETS and Scandinavian carbon taxes (Al-Abdulqader et al., 2025; Falanga et al., 2025). Yet, differences between developed and developing nations illustrate that institutional and infrastructural disparities profoundly affect outcomes (Su & Wang, 2024). The phenomenon of carbon leakage, particularly in developing economies, underscores the interconnectedness of global markets and highlights the necessity of international coordination. Without harmonized standards, carbon pricing risks displacing rather than reducing emissions, diluting global mitigation efforts.

Potential Solutions and Policy Pathways

Addressing these systemic challenges requires multifaceted solutions. Politically, building durable coalitions for carbon pricing demands transparent communication, participatory policymaking, and targeted support for groups disproportionately affected (Hu et al., 2023). Revenue recycling mechanisms such as tax-and-dividend schemes, already piloted in several jurisdictions, demonstrate that public support increases when citizens directly benefit from carbon revenues (Braga & Ernst, 2023). Economically, adaptive carbon pricing frameworks that link pricing trajectories to economic cycles may mitigate political resistance during downturns (Li et al., 2024). These adaptive mechanisms could provide predictability for investors while maintaining flexibility to respond to economic shocks.

Institutionally, capacity building is essential for developing countries seeking to implement carbon pricing. Strengthening monitoring systems, enhancing data transparency, and creating robust enforcement mechanisms are prerequisites for success (Daskalakis et al., 2015). International cooperation can play a vital role in supporting institutional development, for instance through knowledge transfer, technical assistance, and financing mechanisms that help emerging economies build carbon pricing infrastructure. Additionally, integrating carbon pricing with complementary policies—such as renewable energy subsidies, green industrial strategies, and social safety nets—can enhance synergies and mitigate trade-offs. Such policy integration reflects the growing consensus that climate policy must be holistic rather than fragmented.

Research Limitations and Future Directions

Despite the wealth of scholarship on carbon pricing, important limitations remain. One significant constraint is the scarcity of longitudinal data that would allow for robust assessment of long-term

impacts on emissions, innovation, and economic growth (Lutz & Howarth, 2015). Most empirical studies focus on short- to medium-term outcomes, leaving uncertainty about the sustainability of observed effects. Furthermore, the literature often isolates economic impacts without adequately integrating social and environmental dimensions, leading to fragmented understandings of carbon pricing's full implications (Wang et al., 2025). Bridging these silos is crucial for developing more holistic policy frameworks.

Future research should prioritize deeper exploration of the social consequences of carbon pricing, particularly its interactions with income inequality, poverty dynamics, and labor markets (Bistline & Rose, 2018; Sommer et al., 2022). More comparative studies across regions are needed to understand how different institutional and cultural contexts mediate policy effectiveness (Grottera et al., 2022). Additionally, research on policy combinations—such as the integration of carbon pricing with renewable subsidies, public education campaigns, and industrial innovation policies—holds promise for identifying pathways to more effective and equitable transitions (Li et al., 2024; Hirth & Steckel, 2016). By broadening the scope of inquiry, future studies can contribute to designing carbon pricing frameworks that are not only efficient but also socially inclusive and politically resilient.

CONCLUSION

This narrative review demonstrates that carbon pricing remains a pivotal mechanism for addressing climate change, yet its effectiveness depends heavily on design, context, and integration with broader policy frameworks. The findings reveal that carbon pricing stimulates innovation in energy and industrial sectors, reduces emissions in energy and transport, and mobilizes fiscal resources that can be used to support social and environmental programs. However, economic outcomes remain uneven across industries, with small and medium enterprises in resource-intensive sectors disproportionately burdened by higher production costs. Socially, the regressive effects of carbon pricing highlight the urgency of redistributive strategies, such as subsidies, income transfers, and tax-and-dividend models, which have proven effective in mitigating inequalities and enhancing public acceptance.

The discussion emphasizes that systemic factors—political stability, economic conditions, and institutional capacity—are decisive in shaping the success or failure of carbon pricing. Developing countries often face challenges of weak enforcement and carbon leakage, while developed countries contend with political polarization and debates over equity. Addressing these challenges requires deliberate policy design, transparent communication, and integration of carbon pricing with renewable energy subsidies, innovation incentives, and social safety nets. Future research should prioritize longitudinal studies, comparative analyses across regions, and investigations into policy combinations to provide more comprehensive evidence of long-term impacts. The urgency of climate change underscores the necessity of strengthening carbon pricing frameworks, not only as economic instruments but as socially inclusive and politically resilient pathways to a sustainable low-carbon future.

REFERENCE

- Abrell, J., Kosch, M., & Rausch, S. (2022). How effective is carbon pricing?—a machine learning approach to policy evaluation. *Journal of Environmental Economics and Management, 112*, 102589. https://doi.org/10.1016/j.jeem.2021.102589
- Aghion, P., Hepburn, C., Teytelboym, A., & Zenghelis, D. (2019). Path dependence, innovation and the economics of climate change. https://doi.org/10.4337/9781788110686.00011
- Al-Abdulqader, K., Ibrahim, A., Ong, J., & Khalifa, A. (2025). Does carbon pricing matter? Evidence from a global sample. *Energies*, 18(5), 1030. https://doi.org/10.3390/en18051030
- Al-lami, A. (2025). Future energy consumption and economic implications of transport policies: a scenario-based analysis for 2030 and 2050. *Energies, 18*(12), 3012. https://doi.org/10.3390/en18123012
- Amin, N., Sharif, A., Tayyab, M., & Pan, Y. (2024). Green technological advances and resource rents as levers for carbon reduction in BRICS: Implications for SDGs 7, 8, 9, 12, and 13. Sustainable Development, 33(3), 3171-3195. https://doi.org/10.1002/sd.3294
- Axon, S., & Morrissey, J. (2020). Just energy transitions? Social inequities, vulnerabilities and unintended consequences. *Buildings and Cities*, 1(1), 393-411. https://doi.org/10.5334/bc.14
- Azargohar, R., Dalai, A., Hassanpour, E., & Moshiri, S. (2021). Agri-pellets as alternative fuels for coal-fired power plants in Canada. *International Journal of Energy Sector Management*, 16(5), 876-898. https://doi.org/10.1108/ijesm-06-2021-0005
- Berger, S., Christandl, F., Schmidt, C., & Baertsch, C. (2018). Price-based quality inferences for insects as food. *British Food Journal*, 120(7), 1615-1627. https://doi.org/10.1108/bfj-08-2017-0434
- Bistline, J., & Rose, S. (2018). Social cost of carbon pricing of power sector CO₂: Accounting for leakage and other social implications from subnational policies. *Environmental Research Letters*, 13(1), 014027. https://doi.org/10.1088/1748-9326/aa9c89
- Braga, J., & Ernst, E. (2023). Financing the green transition. The role of macro-economic policies in ensuring a just transition. *Frontiers in Climate*, 5. https://doi.org/10.3389/fclim.2023.1192706
- Carlson, N., Singh, A., Talmadge, M., Jiang, Y., Zaimes, G., Li, S., ... & Ramírez-Corredores, M. (2023). Economic analysis of the benefits to petroleum refiners for low carbon boosted spark ignition biofuels. *Fuel, 334*, 126183. https://doi.org/10.1016/j.fuel.2022.126183

- Chen, X., Zheng, L., & Wang, X. (2017). Impact of efficiency, investment, and competition on low carbon manufacturing. *Journal of Cleaner Production*, 143, 388-400. https://doi.org/10.1016/j.jclepro.2016.12.095
- Cocker, F. (2025). Mixes of policy instruments for the full decarbonisation of energy systems: A review. *Energies, 18*(1), 148. https://doi.org/10.3390/en18010148
- Cui, C., Wang, Z., & Bin, G. (2019). Life-cycle CO₂ emissions and their driving factors in construction sector in China. *Chinese Geographical Science*, 29(2), 293-305. https://doi.org/10.1007/s11769-019-1029-z
- Daskalakis, G., Symeonidis, L., & Markellos, R. (2015). Electricity futures prices in an emissions constrained economy: Evidence from European power markets. *The Energy Journal*, *36*(3). https://doi.org/10.5547/01956574.36.3.1
- Ewald, J., Sterner, T., Broin, E., & Mata, É. (2021). Saving energy in residential buildings: The role of energy pricing. *Climatic Change*, 167(1-2). https://doi.org/10.1007/s10584-021-03164-3
- Falanga, A., Picone, M., Greco, F., & Cartenì, A. (2025). A roadmap to low-carbon freight transport: A review of EU directives and regulations. *WSEAS Transactions on Power Systems*, 20, 114-132. https://doi.org/10.37394/232016.2025.20.11
- Fragkos, P., & Fragkiadakis, K. (2022). Analyzing the macro-economic and employment implications of ambitious mitigation pathways and carbon pricing. *Frontiers in Climate*, 4. https://doi.org/10.3389/fclim.2022.785136
- Grubb, M., Poncia, A., Drummond, P., Neuhoff, K., & Hourcade, J. (2023). Policy complementarity and the paradox of carbon pricing. *Oxford Review of Economic Policy*, 39(4), 711-730. https://doi.org/10.1093/oxrep/grad045
- Grottera, C., Naspolini, G., Rovere, E., Gonçalves, D., Nogueira, T., Hebeda, O., ... & Lefèvre, J. (2022). Energy policy implications of carbon pricing scenarios for the Brazilian NDC implementation. *Energy Policy*, 160, 112664. https://doi.org/10.1016/j.enpol.2021.112664
- Gurtu, A., Searcy, C., & Jaber, M. (2017). Emissions from international transport in global supply chains. *Management Research Review*, 40(1), 53-74. https://doi.org/10.1108/mrr-09-2015-0208
- Hirth, L., & Steckel, J. (2016). The role of capital costs in decarbonizing the electricity sector. *Environmental Research Letters*, 11(11), 114010. https://doi.org/10.1088/1748-9326/11/11/114010
- Hu, Y., Tian, Y., & Zhang, L. (2023). Green bond pricing and optimization based on carbon emission trading and subsidies: From the perspective of externalities. *Sustainability*, 15(10), 8422. https://doi.org/10.3390/su15108422

- Hwang, Q., Yao, M., Li, S., Wang, F., Luo, Z., Li, Z., ... & Liu, T. (2023). Risk spillovers between China's carbon and energy markets. *Energies, 16*(19), 6820. https://doi.org/10.3390/en16196820
- Ibitoye, S., Loha, C., Mahamood, R., Jen, T., Alam, M., Sarkar, I., ... & Akinlabi, E. (2024). An overview of biochar production techniques and application in iron and steel industries. *Bioresources and Bioprocessing*, 11(1). https://doi.org/10.1186/s40643-024-00779-z
- Köppl, A., & Schratzenstaller, M. (2022). Carbon taxation: A review of the empirical literature. *Journal of Economic Surveys*, 37(4), 1353-1388. https://doi.org/10.1111/joes.12531
- Li, Y., Lukszo, Z., & Weijnen, M. (2015). The implications of CO₂ price for China's power sector decarbonization. *Applied Energy*, 146, 53-64. https://doi.org/10.1016/j.apenergy.2015.01.105
- Li, X., Lau, W., Law, S., & Li, L. (2024). The shadow economy, natural resource income, and the effect of economic globalization on carbon emissions: Toward a sustainable future. *Natural Resources Forum*. https://doi.org/10.1111/1477-8947.12493
- Ling, Y., Xia, S., Cao, M., He, K., Lim, M., Sukumar, A., ... & Qian, X. (2021). Carbon emissions in China's thermal electricity and heating industry: An input-output structural decomposition analysis. *Journal of Cleaner Production*, 329, 129608. https://doi.org/10.1016/j.jclepro.2021.129608
- Liu, Y., Li, F., & Yu, X. (2018). Gas supply, pricing mechanism and the economics of power generation in China. *Energies*, 11(5), 1058. https://doi.org/10.3390/en11051058
- Lutz, D., & Howarth, R. (2015). The price of snow: Albedo valuation and a case study for forest management. *Environmental Research Letters*, 10(6), 064013. https://doi.org/10.1088/1748-9326/10/6/064013
- Mayanti, B., Hellström, M., & Katumwesigye, A. (2024). Assessing the decarbonization roadmap of a ropax ferry. *Maritime Economics & Logistics*, 27(1), 123-146. https://doi.org/10.1057/s41278-024-00288-y
- Mengesha, I., & Roy, D. (2025). Carbon pricing drives critical transition to green growth. *Nature Communications*, 16(1). https://doi.org/10.1038/s41467-025-56540-3
- Metcalf, G. (2023). Five myths about carbon pricing. Oxford Review of Economic Policy, 39(4), 680-693. https://doi.org/10.1093/oxrep/grad042
- Olasehinde-Williams, G. (2024). Crude oil price volatility—an unintended consequence of carbon pricing: Evidence from transfer entropy and wavelet-partial wavelet coherence analyses. *Energy & Environment*. https://doi.org/10.1177/0958305x241246195

- Rafieisakhaei, M., & Barazandeh, B. (2017). The efficacy of market-based emission control systems: A system dynamics approach. https://doi.org/10.2118/184460-ms
- Rensburg, S., Barnard, S., & Krüger, M. (2016). Challenges in the potable water industry due to changes in source water quality: Case study of Midvaal Water Company, South Africa. *Water SA*, 42(4), 633. https://doi.org/10.4314/wsa.v42i4.14
- Sajjad, S., Bhuiyan, R., Dwyer, R., Bashir, A., & Zhang, C. (2024). Balancing prosperity and sustainability: Unraveling financial risks and green finance through a COP27 lens. *Studies in Economics and Finance*, 41(3), 545-570. https://doi.org/10.1108/sef-06-2023-0353
- Salim, S., & Mustapa, S. (2025). Implications of low-carbon policies on the agricultural sector: A systematic review. *Environmental Research Communications*, 7(6), 065005. https://doi.org/10.1088/2515-7620/addbb0
- Saraji, M., Štreimikienė, D., & Baležentis, T. (2025). Carbon shadow pricing: A two-decade review of key drivers and implications. *Management of Environmental Quality: An International Journal*. https://doi.org/10.1108/meq-01-2025-0039
- Siegmeier, J., Mattauch, L., Franks, M., Klenert, D., Schultes, A., & Edenhofer, O. (2017). The fiscal benefits of stringent climate change mitigation: An overview. *Climate Policy*, 18(3), 352-367. https://doi.org/10.1080/14693062.2017.1400943
- Skovgaard, J., & Asselt, H. (2019). The politics of fossil fuel subsidies and their reform: Implications for climate change mitigation. *Wiley Interdisciplinary Reviews Climate Change*, 10(4). https://doi.org/10.1002/wcc.581
- Sommer, S., Mattauch, L., & Pahle, M. (2022). Supporting carbon taxes: The role of fairness. *Ecological Economics*, 195, 107359. https://doi.org/10.1016/j.ecolecon.2022.107359
- Springmann, M., Sacks, G., Ananthapavan, J., & Scarborough, P. (2018). Carbon pricing of food in Australia: An analysis of the health, environmental and public finance impacts. *Australian and New Zealand Journal of Public Health*, 42(6), 523-529. https://doi.org/10.1111/1753-6405.12830
- Su, X., & Wang, J. (2024). Study on decarbonization trajectories and policy implications for China: A comparative analysis of carbon peak nations. *PLOS One*, 19(8), e0308394. https://doi.org/10.1371/journal.pone.0308394
- Thamrin, M., Nasution, F., & Nuryadin, D. (2025). Carbon tax policy in achieving Indonesia's nationally determined contribution target year 2030. *IOP Conference Series: Earth and Environmental Science*, 1445(1), 012036. https://doi.org/10.1088/1755-1315/1445/1/012036

- Wang, X., Zhu, L., & Liao, H. (2025). Toward efficient mitigation solutions: Source-based carbon pricing and economic implications in China. Journal of Industrial Ecology, 29(3), 794-812. https://doi.org/10.1111/jiec.70011
- Wąs, A., Krupin, V., Kobus, P., Witajewski-Baltvilks, J., Jeszke, R., & Szczepański, K. (2021). Towards climate neutrality in Poland by 2050: Assessment of policy implications in the farm sector. Energies, 14(22), 7595. https://doi.org/10.3390/en14227595
- Wong, D., & Adam, P. (2022). Carbon capture and storage in depleted hydrocarbon reservoirs: Lessons learned from projects in Asia Pacific. https://doi.org/10.2118/210784-ms