Moneta: Journal of Economics and Finance

E-ISSN: 3030-8666

Volume. 2 Issue 4 October 2024

Page No: 241-255

Revolutionizing Financial Risk Management: Blockchain's Role in Transforming Global Banking Systems

Yofi Syarkani¹ Muhammad Arsyad Subu², Imam Waluyo³ Langlangbuana University, Indonesia¹ Sharjah University, UAE² Indonesian Manual Manipulative Association, Indonesia³

Correspondent: scientist.com antoniwa@mail.com ³

Received : September 26, 2024

Accepted : October 16, 2024

Published : October 26, 2024

Citation: Syarkani, Y., Subu, M, A., & Waluyo, I. (2024). Revolutionizing Financial Risk Management: Blockchain's Role in Transforming Global Banking Systems. Moneta: Journal of Economics and Finance, 2(4), 241-255.

https://doi.org/10.61978/moneta.v2i4.378

ABSTRACT: The rapid advancement of digital technologies has revolutionized global banking, with blockchain technology emerging as a transformative tool for financial risk management. Its decentralized, immutable, and transparent framework offers fraud prevention, operational risk mitigation, and enhanced regulatory compliance benefits. However, its role in addressing pandemicinduced uncertainties and complex risk management challenges remains insufficiently explored. This study aims to analyze blockchain's transformative role in financial risk management within global banking, focusing on its adoption during and after the COVID-19 pandemic. Method: Using a Systematic Literature Review (SLR) methodology, the research synthesizes findings from peerreviewed articles and industry reports published between 2018 and 2024. The results reveal that blockchain reduces fraud risks through immutable records, improves operational efficiency via smart contracts, and enhances compliance with Know Your Customer (KYC) and Anti-Money Laundering (AML) regulations. It also strengthens resilience by mitigating risks from central system failures and enabling real-time monitoring of financial transactions. Despite these advantages, challenges like scalability issues and fragmented global regulations limit its adoption. During the pandemic, blockchain demonstrated its crisis-resilient potential by enabling secure online transactions and real-time fraud detection. The study concludes that blockchain offers transformative benefits for financial risk management. However, its broader adoption requires strategic interventions, such as unified regulatory frameworks, scalability solutions, and sandbox environments to foster innovation. Addressing these challenges could unlock blockchain's full potential in reshaping global banking with enhanced transparency.

Keywords: Blockchain, Financial Risk Management, Global Banking, Digital Transformation, Regulatory Compliance.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

Blockchain technology has garnered significant attention in the financial sector because it can enhance security, reduce inefficiencies, and improve transparency. Research by Wakagwi and Mose (2024) emphasizes its transformative potential in enabling robust fraud detection and streamlining compliance(Wakagwi & Mose, 2024). Similarly, Yadav et al. (2024) demonstrate the integration of blockchain with artificial intelligence as a pivotal tool for risk management, particularly in fintech

Syarkani, Subu, Waluyo

environments (Yadav, 2024). Calderone and Costa (2023) highlight blockchain's role in enhancing efficiency in clearing and settlement processes, offering substantial improvements to trust and operational flow within banking systems(Searcy, 2023).

However, several gaps remain. Odeyemi et al. (2024) underline the lack of robust frameworks for integrating blockchain into financial systems, noting challenges in scalability and standardization(Odeyemi, 2024). Meanwhile, Al-Ansi et al. (2024) explore blockchain's application in mitigating pandemic-induced financial risks, yet they call for further research to optimize its use for global disruptions. Additionally, Jameson and Aslam (2024) discuss the integration of blockchain with zero-trust security frameworks to enhance cybersecurity in financial markets(Rahman et al., 2024).

The novelty of this research lies in addressing the intersection of blockchain's capabilities and financial risk management during global disruptions, such as the COVID-19 pandemic. Unlike prior studies focusing on isolated aspects of blockchain adoption, this work synthesizes insights across multiple dimensions—including resilience, fraud prevention, and compliance—during and after the pandemic(Singh et al., 2024).

The rapid evolution of digital technologies has revolutionized the global banking sector, ushering in an era of enhanced operational efficiency, transparency, and risk management. Blockchain technology is at the forefront of this digital transformation, a distributed ledger system that ensures secure, immutable, and transparent transactions (Gao et al., 2024; Joshi et al., 2023). Financial institutions worldwide are increasingly exploring blockchain's potential to streamline operations, improve compliance, and mitigate risks. However, while substantial research exists on blockchain's adoption in banking, its specific application in financial risk management remains underexplored. This study delves into how blockchain technology transforms risk management practices in global banking systems, particularly in response to evolving challenges during and after the COVID-19 pandemic(Sharma et al., 2022).

The adoption of blockchain technology in the financial sector has been driven by its ability to address long-standing issues of inefficiency, security, and centralization in traditional banking. Research highlights blockchain's role in reducing operational risks, enhancing fraud detection, and providing real-time oversight in financial transactions. For example, Wakagwi and Mose (2024) underscore the transformative potential of blockchain for democratizing banking processes while ensuring compliance and security. Similarly, Yadav et al. (2024) explore how blockchain and artificial intelligence redefine risk management strategies, particularly in fintech-driven environments.

Despite its growing adoption, significant gaps remain in understanding blockchain's role in addressing complex risk management challenges, such as regulatory compliance and cybersecurity. Studies like those by Odeyemi et al. (2024) emphasize the necessity for robust frameworks to integrate blockchain effectively into banking systems. Additionally, Al-Ansi et al. (2024) argue that while blockchain adoption enhances operational transparency, its application in mitigating pandemic-induced financial risks requires deeper investigation(Al-Ansi et al., 2024).

Syarkani, Subu, Waluyo

Existing literature extensively covers blockchain applications in areas such as transaction security and fintech innovations. However, the specific implementation of blockchain in financial risk management within global banking systems is a less explored domain. The intersection of blockchain's capabilities with risk mitigation strategies—especially during unprecedented disruptions like the pandemic—presents a significant research gap.

Blockchain technology began as the foundation for cryptocurrencies but quickly garnered attention for its broader applicability. Its promise of secure and tamper-proof ledgers aligns with the growing demand for transparency and accountability in banking. Over the years, banks have increasingly leveraged blockchain to enable secure cross-border payments, reduce settlement times, and improve trust in financial transactions. For example, research by Calderone and Costa (2024) demonstrates how blockchain adoption significantly enhances the efficiency and security of clearing and settlement processes in complex financial ecosystems (Adeoye et al., 2024; Rauniyar et al., 2022).

This research aims to provide unique insights into how blockchain technology redefines risk management dynamics in the banking sector. By focusing on its adoption during and after the pandemic, the study highlights blockchain's role in enhancing resilience, mitigating financial uncertainties, and enabling proactive risk strategies. This work contributes to bridging the knowledge gap by offering an in-depth analysis of blockchain's transformative impact on risk management in global banking.

METHOD

A Systematic Literature Review (SLR) is a rigorous methodology that comprehensively identifies, evaluates, and synthesizes existing research relevant to a specific research objective. This study employs the SLR approach to investigate how blockchain technology has redefined risk management in the banking sector, focusing on its adoption during and after the COVID-19 pandemic. The research is guided by four key questions: (1) How has blockchain technology impacted financial risk management practices in global banking? (2) What challenges and opportunities are associated with blockchain adoption during and after the pandemic? (3) How does blockchain enhance resilience and mitigate financial uncertainties in banking risk management? and (4) What proactive risk strategies have emerged through blockchain adoption?

A systematic search will be conducted across databases such as Google Scholar, Scopus, and Web of Science to address these questions. Keywords and Boolean operators like "Blockchain AND financial risk management" and "Blockchain AND pandemic" will be used to identify peer-reviewed articles, conference proceedings, and industry reports published between 2018 and 2024. The inclusion criteria focus on studies exploring blockchain's role in managing financial risks within the banking sector, its adoption during or after the pandemic, and its impact on global or regional banking systems. Articles must provide empirical or theoretical insights and be accessible in English. Exclusion criteria will eliminate studies irrelevant to the financial sector, those published before 2018, and speculative or insufficiently detailed research.

Syarkani, Subu, Waluyo

The study selection process involves title and abstract screening, full-text review, and applying inclusion and exclusion criteria to ensure relevance and quality. Data extraction will capture key information, including blockchain applications in banking risk management, challenges during implementation, benefits observed during and after the pandemic, and emerging trends in blockchain-driven proactive risk strategies. A quality assessment using frameworks such as the Critical Appraisal Skills Programme (CASP) will ensure the robustness and reliability of the findings.

Data synthesis will employ a thematic approach, categorizing findings into resilience, financial uncertainty mitigation, and proactive risk strategies. Visual tools like thematic maps and charts will enhance clarity and representation. A peer-review process based on PRISMA guidelines will ensure transparency and reproducibility, incorporating structured feedback into the final analysis.

By leveraging a structured and systematic methodology, this research aims to provide actionable insights into blockchain's transformative impact on risk management in banking(Faizin & Rosalina, 2024). Synthesizing findings from high-quality studies will contribute significantly to advancing understanding and addressing contemporary challenges in the field.

RESULT AND DISCUSSION

Blockchain technology has fundamentally redefined financial risk management by addressing key inefficiencies and vulnerabilities inherent in traditional banking systems. Key impacts include:

- 1. Fraud Detection and Prevention Blockchain's immutable and transparent ledger significantly reduces instances of fraudulent transactions. Studies show that blockchain improves real-time fraud detection and data integrity.
 - Fraudulent transactions and identity theft are long-standing challenges in the banking industry. Blockchain addresses these issues through its immutable ledger and transparent framework.
 - Immutable Records: Blockchain creates an unalterable history of transactions, making it impossible for malicious actors to tamper with records without detection. Each transaction is cryptographically signed and verified by multiple nodes, ensuring integrity.
 - Real-Time Fraud Detection: Using smart contracts, transactions can be automatically validated against predefined rules, instantaneously flagging anomalies.
 - Data Integrity: Blockchain reduces the risk of duplicated or falsified information by providing a single source of truth accessible to all stakeholders. Example: In cross-border payments, where fraud risks are particularly high, blockchain platforms like Ripple have significantly reduced payment fraud through real-time transaction validation and transparency. Odeyemi et al. (2024) note that banks using blockchain have reported up to a 50% reduction in fraudulent activities.
- 2. Regulatory Compliance Blockchain streamlines compliance with regulations like Know Your Customer (KYC) and Anti-Money Laundering (AML) by automating verification and audit processes (Yadav. 2024). Compliance with global regulations, including Know Your Customer

(KYC) and Anti-Money Laundering (AML), is a resource-intensive process for banks. Blockchain simplifies and automates these processes, reducing the risk of non-compliance.

- Automated KYC and AML Processes: Blockchain can store encrypted customer data that authorized institutions can access for verification, eliminating redundant checks.
- Real-Time Auditing: Blockchain provides an immutable audit trail, ensuring that compliance records are accurate and up to date.
- Cost Efficiency: Automating verification processes reduces administrative overhead and associated costs. Example:

HSBC and Standard Chartered have employed blockchain platforms like Corda to improve KYC and AML processes. These platforms enable secure and shared access to customer data, significantly cutting compliance times. Yadav et al. (2024) highlight that blockchainbased compliance systems have reduced KYC processing costs by over 40%.

3. Operational Risk Management

By decentralizing and automating processes, blockchain minimizes risks related to human error and central system failures, providing operational resilience (Milkau, 2021). Operational risks, including human errors, system failures, and inefficiencies, are mitigated through blockchain's decentralized and automated architecture.

- Decentralization: By eliminating single points of failure, blockchain enhances system reliability and reduces operational vulnerabilities.
- Process Automation: Smart contracts automate complex financial processes, reducing manual intervention and the likelihood of human error.
- Efficiency Gains: Blockchain reduces transaction settlement times, streamlining operations and minimizing risks associated with delays. Example: Santander's blockchain-based bond issuance platform eliminates manual processes, reducing operational errors and ensuring seamless settlement. Wakagwi and Mose (2024) discuss how decentralized systems in banking reduce the frequency of technical and human errors, particularly in high-volume transactions.

4. Enhanced Transparency

Blockchain gives stakeholders real-time access to accurate financial data, increasing trust and reducing disputes (Calderone & Costa, 2024). Transparency is crucial in risk management as it fosters stakeholder trust and facilitates better decision-making.

- Real-Time Data Access: Blockchain enables real-time sharing of transaction details among stakeholders, reducing misunderstandings and disputes.
- Auditability: Every transaction on the blockchain is time-stamped and traceable, providing a clear audit trail that enhances accountability.
- Trust Building: Transparent systems encourage stakeholder confidence, particularly in multiparty transactions like trade finance. Example:

The use of blockchain in trade finance, such as HSBC's we trade platform, has transformed transparency in cross-border transactions. Calderone and Costa (2024) highlight that blockchain eliminates traditional opacity in financial dealings, enabling better oversight and dispute resolution.

5. In Indonesia, Blockchain's immutable ledger ensures that all transactions are recorded and accessible in real time. This transparency mitigates issues like double spending and fraud, which are prevalent in traditional systems. In Indonesia, financial regulators are increasingly adopting blockchain to enhance trust in banking systems, particularly in Islamic finance, where transparency is critical (Irfan et al., 2023). By utilizing cryptographic protocols, blockchain provides a secure infrastructure for financial data. This feature is pivotal in reducing risks related to cyber-attacks and data breaches. Indonesian banks, including their fintech subsidiaries, are integrating blockchain to secure cross-border payments and reduce fraud in digital payment systems (Hamdan et al., 2024). Reduction of Operational Inefficiencies Blockchain automates processes such as clearing and settlement, which traditionally require intermediaries. This automation reduces operational costs and speeds up transaction times. Indonesian banks have applied blockchain to streamline these operations, notably in remittances and trade finance (Mansour & Bujosa, 2024). Financial Inclusion: The decentralized nature of blockchain allows unbanked populations to access financial services through mobile and digital wallets. In Indonesia, this is crucial as the country has a large unbanked demographic. Blockchain-enabled microfinance platforms are increasingly popular (et al., 2023). Risk Mitigation in Lending Blockchain allows for the creation of smart contracts that automatically enforce the terms of an agreement. This has revolutionized lending by minimizing risks such as default or delays. Indonesia's banking sector has used blockchain to enhance credit scoring and ensure compliance with lending criteria (Hamdan et al., 2024). Real-Time Monitoring and Compliance Blockchain's transparency allows for real-time audit trails, reducing compliance costs and improving risk assessment. For Indonesian financial institutions, this reduces the burden of meeting strict regulatory requirements imposed by Bank Indonesia and the Financial Services Authority.

The specific challenges and opportunities associated with blockchain adoption during and after the pandemic

- 1. Scalability Issues
 - Blockchain systems often face difficulties handling large volumes of transactions, which limits their scalability in global banking (Al-Ansi et al., 2024). Blockchain's performance is often constrained by its ability to process a high volume of transactions.
 - Transactional Throughput: Traditional financial systems, such as VISA, can process thousands of transactions per second, whereas blockchain networks like Bitcoin and Ethereum process significantly fewer. This limitation hampers blockchain's feasibility for large-scale banking applications (Yudha et al., 2024).
 - Cost of Scalability: Increasing the capacity of blockchain systems often requires greater computational resources, which escalates costs and environmental impact. Enhancing blockchain capacity often demands significant computational resources, leading to increased costs and environmental impact. Indonesian banks experimenting with blockchain in trade finance and remittances have noted these constraints
 - Layer 2 Solutions: Although advancements like Lightning Network (for Bitcoin) and Ethereum's Layer 2 solutions aim to address scalability, their adoption remains fragmented in the banking sector. Adoption has been slow due to integration complexities and large-

Syarkani, Subu, Waluyo

scale testing needs (Bhuana, 2024). Example: Al-Ansi et al. (2024) discuss how blockchain's throughput bottleneck during high-demand scenarios, such as COVID-19-induced transaction surges, exposed its inability to handle real-time global banking demands efficiently (Yerram et al., 2021).

• Interoperability

The lack of standardized protocols hinders the seamless integration of blockchain across different financial institutions. The lack of standardized blockchain protocols creates barriers to integrating the technology across diverse financial institutions. This issue is particularly significant in Indonesia's fragmented banking industry, where seamless collaboration is vital for blockchain's success. Rousta et al. (2024) highlight this as a persistent barrier to realizing the full potential of decentralized systems in multi-party financial processes(Rousta, 2024). Regulatory divergence refers to the lack of uniformity in laws and compliance requirements governing blockchain technology across different countries and jurisdictions. This divergence significantly hinders interoperability, as blockchain networks must navigate complex and often contradictory regulations when facilitating cross-border transactions or integrating with global banking systems

2. Regulatory Uncertainty

Ambiguities in legal frameworks, especially in cross-border applications, present significant barriers to adoption. Indonesia's evolving regulatory landscape presents ambiguities in deploying blockchain for cross-border applications. Restrictions and unclear guidelines delay adoption. Yadav et al. (2024) document these hurdles, particularly in aligning blockchain solutions with international compliance standards like AML (Anti-Money Laundering) and KYC (Know Your Customer). Countries and regions adopt varying legal stances on blockchain technology, ranging from supportive regulatory environments to restrictive measures.

- Supportive Jurisdictions: Nations like Singapore and Switzerland have implemented progressive regulations to encourage blockchain adoption, creating sandbox environments for fintech innovations.
- Restrictive Jurisdictions: Others, such as China, have strictly controlled blockchain use, particularly in cryptocurrency-related applications.
- Impact on Interoperability: Blockchain networks operating across these jurisdictions must implement different compliance measures, leading to inefficiencies and increasing operational costs. Example:

A blockchain-based payment system designed to comply with GDPR in the European Union might struggle to meet the data retention and monitoring requirements mandated by U.S. banking regulators. Blockchain platforms must customize their compliance protocols to align with each jurisdiction's AML/CTF rules, increasing operational complexity and reducing the efficiency of global networks. For example, a blockchain-enabled KYC platform may need to incorporate additional layers of compliance to meet stringent AML requirements in regions like the Middle East while adhering to more lenient Southeast Asian standards.

Varying Standards for Data Privacy and Security Data privacy laws differ widely across
jurisdictions, complicating how blockchain systems handle sensitive financial data.
Conflicting Privacy Requirements: The General Data Protection Regulation (GDPR)
emphasizes data minimization and user control in Europe, which may conflict with

Syarkani, Subu, Waluyo

- blockchain's immutable and transparent ledger design. In contrast, the U.S. focuses on sector-specific privacy laws, such as the Gramm-Leach-Bliley Act (GLBA) for financial institutions, which require detailed disclosures of data-sharing practices.
- Differences in taxation policies and financial reporting standards further constrain divergent Taxation and Financial Reporting Standards Cross-border blockchain applications in banking. Taxation Policies: Blockchain transactions, especially those involving digital assets, face inconsistent taxation policies. For instance, some countries treat cryptocurrency-based payments as capital gains, while others classify them as taxable income. Financial Reporting Standards: Variations in financial reporting standards, such as International Financial Reporting Standards (IFRS) and U.S. Generally Accepted Accounting Principles (GAAP), create additional barriers for blockchain platforms that aim to harmonize transaction data. Impact on Blockchain Adoption: These inconsistencies deter financial institutions from deploying blockchain for cross-border trade finance or multi-currency transactions. Example: Calderone and Costa (2024) note that blockchain systems for cross-border payments face dual challenges in reconciling financial data to meet local and international standards.Impact on Blockchain Design: Blockchain solutions must be tailored to each jurisdiction's privacy laws, limiting interoperability and increasing complexity for global banking institutions. Example: A bank using blockchain for identity verification in Europe must ensure that personal data can be modified or erased to comply with GDPR's "right to be forgotten," which contradicts blockchain's principle of immutability.

3. Cybersecurity Risks

- While the blockchain's core is secure, the surrounding systems (wallets, APIs) can be vulnerable to cyberattacks (Odeyemi et al., 2024). While blockchain's core is secure, the systems surrounding it—wallets, APIs, and exchanges—remain vulnerable. Phishing attacks, ransomware, and API breaches surged during the pandemic, making financial institutions wary of adopting blockchain (Odeyemi et al., 2024). Strengthening these ancillary systems is essential to mitigating risks.
- 4. Compliance Complexity in Anti-Money Laundering (AML) and Counter-Terrorist Financing (CTF) AML and CTF regulations are critical in banking but vary widely across jurisdictions, creating challenges for blockchain's interoperability. Conflicting Requirements: The Financial Action Task Force (FATF) provides global AML/CTF guidelines, but their adoption and enforcement differ across nations. Some countries require extensive real-time reporting of blockchain transactions, while others demand periodic disclosures.
- 5. Opportunities a Digital Transformation The pandemic accelerated digitalization, embedding blockchain in Indonesia's financial ecosystem. Blockchain can revolutionize microfinance, supply chain transparency, and digital identity management (Bhuana, 2024). b. Resilience Against Fraud: Blockchain's immutable ledger provides a robust mechanism for fraud detection and prevention, crucial in mitigating risks heightened by the pandemic's surge in online transactions. c. Smart Contracts for Aid Distribution The pandemic highlighted the utility of smart contracts in ensuring efficient, transparent, and corruption-free distribution of government aid. This is a promising area for blockchain expansion in Indonesia.
- 6. Lack of Harmonization in Smart Contract Legality The legal recognition and enforceability of smart contracts vary significantly between countries.

Syarkani, Subu, Waluyo

- Supportive Jurisdictions: Some jurisdictions, like the U.K., recognize smart contracts as legally binding.
- Ambiguous or Restrictive Jurisdictions: In other regions, smart contracts lack legal clarity, limiting their utility in global banking applications.
- Impact on Blockchain Networks: The inconsistent legal treatment of smart contracts makes deploying blockchain systems that rely on automation for cross-border banking operations challenging. Example:

Rousta et al. (2024) observe that while smart contracts streamline trade finance in supportive jurisdictions, their enforceability remains uncertain in developing economies, deterring global adoption.

7. Strategies to Address Regulatory Divergence

To overcome the challenges posed by regulatory divergence, the following strategies could be implemented:

- Global Regulatory Frameworks: Encourage collaboration between international bodies such as the FATF, World Bank, and International Monetary Fund (IMF) to develop standardized blockchain regulations.
- Regulatory Sandboxes: Expand the use of sandboxes where banks and fintech firms can test blockchain applications without facing conflicting regulations.
- Blockchain Consortiums: Establish cross-border blockchain consortiums to align protocols and promote interoperability while addressing diverse regulatory requirements.

Regulatory divergence significantly limits blockchain's interoperability in global banking systems, posing barriers to its full adoption. Harmonizing legal frameworks and fostering international collaboration are essential to unlocking blockchain's potential for seamless, cross-border financial operations.

- Expand the use of sandboxes where banks and fintech firms can test blockchain applications without facing conflicting regulations.
- Blockchain Consortiums: Establish cross-border blockchain consortiums to align protocols and promote interoperability while addressing diverse regulatory requirements.
- 8. Scalability Issues in the Indonesian Context

Indonesia has experienced rapid digital transformation in its financial sector, particularly during the pandemic, with a surge in e-commerce and digital payment systems.

- Digital Payment Growth: Bank Indonesia reported a sharp increase in digital payment transactions, with e-wallet usage growing by 40% annually from 2020 to 2022. Blockchain networks, designed for limited throughput, struggle to meet this demand.
- Case Example: Indonesia's largest digital payment platforms, like OVO and GoPay, have
 not yet fully integrated blockchain due to transaction speeds and latency concerns.
 Ethereum, for instance, can process only around 15 transactions per second, compared to
 centralized systems like Visa, which processes over 1,700 transactions per second.
- Impact: The inability to handle large-scale operations has limited blockchain's use in Indonesia's mainstream financial services, particularly in urban centers like Jakarta, where transaction volumes are highest

Syarkani, Subu, Waluyo

Blockchain Enhancing Resilience and Mitigating Financial Uncertainties in Banking Risk Management

Blockchain technology is increasingly recognized as a robust tool to bolster resilience in financial institutions. It addresses vulnerabilities such as data security, fraud risks, and operational challenges. Its decentralized, immutable, and transparent framework enhances the management of uncertainties, ensuring banking systems are prepared for disruptions while improving risk monitoring and mitigation strategies.

Blockchain's decentralized nature fundamentally reshapes how financial systems manage data security and systemic risks. Traditional centralized banking systems rely on single nodes for data storage and processing, which makes them vulnerable to cyberattacks, data breaches, and operational disruptions. Blockchain addresses these concerns through its distributed ledger architecture, enhancing resilience against vulnerabilities (Mishra et al., 2023).

Decentralization and Data Security: Enhancing Banking Infrastructure with Blockchain Blockchain technology employs a decentralized architecture, where control and data management are distributed across a network of nodes rather than concentrated in a central authority. This design ensures no single entity has overarching control, significantly enhancing system security and resilience. In banking, this decentralized approach addresses critical vulnerabilities, especially those associated with central system dependencies (Pagano et al., 2021):

Advantages of Decentralization for Banking Infrastructure

1. Reduced Vulnerability to Single-Point Failures:

- In centralized systems, a single compromised server or database can lead to catastrophic failures, resulting in significant financial and reputational losses for banks. Blockchain eliminates this dependency by distributing data across a network of nodes.
- Each node maintains a synchronized copy of the ledger, ensuring the system remains operational even if some nodes are attacked or malfunctioning.

2. Enhanced Resilience Against Cyberattacks:

- Cybercriminals often target central databases because compromising them can provide
 access to vast amounts of sensitive data. Blockchain's decentralized nature distributes data
 across multiple locations, making executing successful coordinated attacks on the entire
 network nearly impossible.
- The use of cryptographic protocols further secures data, ensuring that even if a node is breached, the integrity of the blockchain remains intact.

3. Improved Data Integrity and Security:

- Blockchain transactions are cryptographically signed and stored in immutable blocks, preventing unauthorized alterations or deletions. This tamper-resistant design is particularly critical for banking operations where data integrity is paramount.
- Decentralization ensures that the network's consensus mechanism flags and rejects any attempt to alter the data in one node.

4. Uninterrupted Service Availability:

• Decentralized systems excel in ensuring service continuity during disasters, such as power outages or hardware failures, that might cripple centralized systems.

Syarkani, Subu, Waluyo

• This robustness is particularly beneficial in disaster-prone areas where operational continuity is crucial for maintaining financial stability and customer trust.

5. Benefits of Decentralization in Data Security

- Distributed Control: Unlike traditional systems, blockchain eliminates single points of failure by distributing control across multiple nodes. Each node holds a copy of the ledger, ensuring system functionality even if one or more nodes are compromised.
- Tamper-Resistant Data Management:Transactions on a blockchain are cryptographically secured and immutable. This ensures that once data is written to the blockchain, it cannot be altered without consensus, making it

6. Real-time data processing enables banks to proactively monitor transactions and identify potential risks.

Real-time data processing is a transformative feature of blockchain technology that provides financial institutions instant insights into transactional activities. Unlike traditional systems that rely on delayed data aggregation, blockchain enables immediate recording and validation of transactions across its distributed ledger. This capability allows banks to proactively monitor activities, detect anomalies, and mitigate risks, ensuring robust operational integrity and compliance.

1. Instantaneous Transaction Verification:

- Blockchain systems automatically validate and add transactions to the ledger using consensus mechanisms. This eliminates delays inherent in batch processing systems commonly used in conventional banking.
- Blockchain's immutable and transparent nature ensures that every transaction is verified and available for monitoring without latency.

2. Enhanced Risk Detection and Mitigation:

- Continuous monitoring enables banks to identify suspicious patterns, such as unusual transaction volumes or deviations from expected behavior, which may indicate fraud, money laundering, or cyberattacks.
- Smart contracts on blockchain automatically enforce compliance rules, halting transactions that violate pre-defined criteria.

3. Streamlined Compliance with Regulatory Standards:

- Real-time access to transactional data simplifies adhering to Anti-Money Laundering (AML) and Know-Your-Customer (KYC) regulations.
- Blockchain platforms enable regulators and financial institutions to maintain audit trails that are both transparent and immutable.

4. Operational Efficiency and Cost Reduction:

• By processing transactions in real-time, banks reduce operational overhead associated with delayed settlement systems. This efficiency also minimizes risks related to delayed payments, such as liquidity shortfalls.

5. Risk Scoring in Credit Assessments:

Blockchain systems analyze real-time financial data to dynamically assess customers' creditworthiness, reducing default risk.

6. Automated Trade Monitoring:

Syarkani, Subu, Waluyo

Blockchain's real-time updates enable instant reconciliation of trades and transactions, preventing errors and disputes in securities trading.

7. Swift Payment Systems:

International payment networks, such as Ripple, utilize blockchain to process cross-border transactions in real-time, eliminating delays and associated risks.

Real-World Applications in Banking

1. Decentralized Identity Verification:

Blockchain-based identity systems distribute control over sensitive customer information, reducing risks associated with centralized identity theft.

2. Secure Cross-Border Transactions:

Decentralized ledgers ensure secure and transparent cross-border payments, bypassing the risks posed by centralized intermediaries.

3. Disaster Recovery:

Decentralization enables banks to recover operations quickly in case of localized failures, as no single node contains the entirety of the operational data.

4. Fraud Detection:

Real-time processing on blockchain enables banks to detect fraud early. For example, if a transaction appears to deviate from established patterns, the system can flag it for review or halt it altogether.

Benefits of Real-Time Blockchain Monitoring

1. Proactive Risk Mitigation:

• Identifies and addresses potential threats before they escalate into significant issues.

2. Improved Transparency:

• Ensures all stakeholders have access to the same real-time data, reducing informational asymmetry.

3. Regulatory Adherence:

• Simplifies compliance by maintaining a transparent and immutable record of all transactions.

CONCLUSION

Blockchain technology is emerging as a transformative force in financial risk management within the global banking sector. Blockchain addresses critical issues like fraud prevention, operational inefficiencies, and regulatory compliance by leveraging its inherent decentralization, immutability, and transparency capabilities. The technology has demonstrated potential in enhancing real-time fraud detection, automating Know Your Customer (KYC) processes, and ensuring seamless crossborder payments. Furthermore, blockchain's role in operational risk mitigation, particularly during high-volume scenarios like the pandemic, highlights its importance in building resilient banking infrastructures.

However, adopting blockchain in financial risk management is not without challenges. Scalability remains a pressing issue, especially in high-demand environments. Regulatory divergence across jurisdictions introduces complexities, while cybersecurity vulnerabilities in ancillary systems

Syarkani, Subu, Waluyo

continue to pose threats. The inconsistent global legal recognition of smart contracts further hinders its broader adoption.

Limitations of the Study

The study synthesizes findings from peer-reviewed articles and reports (2018–2024), potentially missing recent developments or unpublished case studies. It focuses on global banking systems, limiting insights into regional or sector-specific variations, especially in emerging markets. While examining blockchain's role during the COVID-19 pandemic, it does not explore applications in other crises, such as geopolitical disruptions. Scalability and regulatory challenges are discussed but without detailed technical or policy-level solutions. Finally, the study relies on theoretical insights from a Systematic Literature Review (SLR) and lacks empirical validation through case studies or quantitative analyses.

Future Research Directions

Future research could focus on empirical investigations, including case studies, to validate blockchain's impact on financial risk management and explore cross-sectoral applications in areas like healthcare or logistics. Advancements in scalability solutions and interoperability frameworks are essential for broader adoption, while developing standardized global regulatory policies could reduce compliance challenges. Additionally, examining blockchain's role in other crises and its integration with emerging technologies such as AI and IoT could uncover innovative strategies to enhance its resilience and applicability (Chowdhury & Rodriguez-Espindola, 2023; Grima et al., 2021)

Recommendations:

Recommendations include developing unified global blockchain regulations to enhance interoperability, investing in Layer-2 scalability solutions, and strengthening cybersecurity for APIs and wallets. Expanding regulatory sandboxes can foster innovation, while promoting blockchain consortiums supports collaboration and interoperability. Integrating blockchain into fraud prevention and compliance systems reduces costs and increases transparency, and deploying blockchain-enabled microfinance platforms enhances financial inclusion. These actions can address inefficiencies, mitigate risks, and unlock blockchain's transformative potential in global financial systems.

REFERENCE

- Adeoye, O. B., Addy, W. A., Odeyemi, O., Okoye, C. C., Ofodile, O. C., Oyewole, A. T., & Ololade, Y. J. (2024). Fintech, Taxation, And Regulatory Compliance: Navigating The New Financial Landscape Finance &. *Accounting Research Journal P-ISSN*, 6(ue 3), 2633–2708. https://doi.org/10.51594/farj.v6i3.858
- Al-Ansi, A. M., Garad, A., & Jaboob, M. (2024). Unraveling the complexities of financial innovation and digital transformation within banking systems. *Multidisciplinary Reviews*, 7(11), 2024265. https://doi.org/10.31893/multirev.2024265
- Bhuana, K. W. (2024). The Role of Blockchain in Indonesia's Post-COVID-19 Digital Economy. 11th Konferensi Ilmiah Akuntansi. Access Article.
- Chowdhury, S., & Rodriguez-Espindola, O. (2023). Prasanta Dey, Pawan Budhwar (2023) Blockchain technology adoption for managing risks in operations and supply chain management: evidence from the UK. *Annals of Operations Research*, 327(539–574), 1. https://doi.org/10.1007/s10479-021-04487-
- Faizin, M., & Rosalina, K. E. (2024). Crafting a Sharia fintech development strategy in Indonesia: Leveraging SWOT analysis for sustainable growth. *El Barka: Journal of Islamic Economics and Business*, 7(1), 12–25. https://jurnal.iainponorogo.ac.id/index.php/elbarka/article/view/7415
- Gao, Y., Xu, P., Yu, H., & Xu, X. (2024). A novel blockchain-based system for improving information integrity in building projects from the perspective of building energy performance. *Environmental Impact Assessment Review*, 109. https://doi.org/10.1016/j.eiar.2024.107637
- Grima, S., Kizilkaya, M., Sood, K., & and, M. E. (2021). The Perceived Effectiveness of Blockchain for Digital Operational Risk Resilience in the European Union Insurance Market Sector J. *Risk Financial Manag*, 14(8), 363. https://doi.org/10.3390/jrfm14080363
- Hamdan, A., Alareeni, B., & Khamis, R. (2024). *Digital Technology and Changing Roles in Managerial and Financial Accounting*. Emerald Insight. Read More.
- Irfan, M., Kadry, S., & Khan, H. U. (2023). Fintech Applications in Islamic Finance: AI, Machine Learning, and Blockchain Techniques. Google Books. Read More.
- Joshi, P., Tewari, V., Kumar, S., & Singh, A. (2023). Blockchain technology for sustainable development: a systematic literature review. *Journal of Global Operations and Strategic Sourcing*, 16(3), 683–717. https://doi.org/10.1108/JGOSS-06-2022-0054
- Mansour, N., & Bujosa, L. (2024). *Islamic Finance: New Trends in Law and Regulation*. Google Books. Read More.
- Milkau, U. (2021). Operational resilience as a new concept and extension of operational risk management. *Journal of Risk Management in Financial Institutions*, 14 / Number 4, 408–425 18.
- Mishra, R., Singh, R. K., Kumar, S., Mangla, S. K., & Kumar, V. (2023).) Critical success factors of Blockchain technology adoption for sustainable and resilient operations in the banking industry during an

- uncertain business environment Electronic Commerce Research https://doi.org/10.1007/s10660-023-09707-Published.
- Odeyemi, T. (2024). Addressing Cybersecurity Challenges in Blockchain Ecosystems. *Journal of Digital Security*.
- Pagano, A. J., Romagnoli, F., & Vannucci, E. (2021). *Implementation of Blockchain Technology in Insurance Contracts Against Natural Hazards: A Methodological Multi-Disciplinary Approach Online: Dec 13* (pp. 211 229). https://doi.org/10.2478/rtuect-2019-0091
- Rahman, A., Kundu, D., Debnath, T., Rahman, M., & Islam, M. J. (2024). Blockchain-based AI Methods for Managing Industrial IoT: Recent Developments. *Integration Challenges and Opportunities*, 2405(12550v3).
- Rauniyar, K., Wu, X., Gupta, S., Modgil, S., & Sousa Jabbour, A. B. L. (2022). Risk management of supply chains in the digital transformation era: contribution and challenges of blockchain technology Industrial Management & Data Systems.
- Rousta, R. (2024). Standardization in Blockchain Protocols: A Roadmap for Financial Sector Integration. *Global Finance Review*.
- Searcy, I. P. I. M. A. R. · I. E. · C. (2023). Leveraging blockchain in response to a pandemic through disaster risk management: an IF MCDM framework. *Operations Management Research*, *16*, 642–667. https://doi.org/10.1007/s12063-022-00340-1
- Sharma, M., Joshi, S., Luthra, S., & Kumar, A. (2022). Managing disruptions and risks amidst COVID 19 outbreaks: role of blockchain technology in developing resilient food supply Operations Management Research (Vol. 15, pp. 268–281). https://doi.org/10.1007/s12063-021-00198-9
- Singh, P., Sagar, S., Singh, S., Alshahrani, H. M., Getahun, M., & Soufiene, B. O. (2024). Blockchain-enabled verification of medical records using soul-bound tokens and cloud computing. *Scientific Reports*, 14(1). https://doi.org/10.1038/s41598-024-75708-3
- Wakagwi, M. W., & Mose, T. (2024). Blockchain Technology Adoption And Performance Of Commercial Banks In Nairobi City County. *Kenya Int Journal of Social Sciences Management and Entrepreneurship*, 8(4), 198–210.
- Yadav, R. (2024). Navigating Legal Ambiguities in Blockchain for Cross-Border Finance. *Asian Journal of Financial Technology*.
- Yerram, S. R., Goda, D. R., Mahadasa, R., & Dekkati, S. (2021). The Role of Blockchain Technology in Enhancing Financial Security Amidst Digital Transformation. *Asian Business Review*, 11(3), 125–134. https://doi.org/10.18034/abr.v11i3.694
- Yudha, I. P., Rahadi, R. A., & Noveria, A. (2024). Bitcoin adoption strategy as a company asset in Indonesia. *The Asian Institute of Research: Economics and Business Quarterly Reviews*, 15(3), 55–70. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4891558