Logistica: Journal of Logistic and Transportation

E-ISSN: 3032-2766

Volume. 3, Issue 1, January 2025

Page No: 38-46

Heuristic Route Optimization Using Saving Matrix and Nearest Neighbor: Case Study at PT Harapan Jaya Multi Bisnis, Makassar

Tutik Siswanti¹, Rehani Fitrina²

¹Universitas Dirgantara Marsekal Suryadarma, Indonesia

²Institut Transportasi dan Logistik Trisakti, Indonesia

Correspondent: <u>tutik@unsurya.ac.id</u>¹

Received : December 30, 2024 Accepted : January 21, 2025 Published : January 31, 2025

Citation: Siswanti, T., Fitrina, R. (2025). Heuristic Route Optimization Using Saving Matrix and Nearest Neighbor: Case Study at PT Harapan Jaya Multi Bisnis, Makassar. Logistica: Journal of Logistic and Transportation. 3(1), 38-46.

ABSTRACT: Indonesia faces disproportionately high logistics costs compared to regional and global peers. This study applies Saving Matrix and Nearest Neighbor algorithms to optimize delivery routes at PT Harapan Jaya Multi Bisnis in Makassar, a key logistics hub in Eastern Indonesia. Using operational data from 2022-2023, the research consolidated 12 delivery routes into 5 optimized routes. The optimization reduced the total delivery distance from 2,772 km to 1,967 km, saving 805 km (29%), and lowered distribution costs by approximately Rp 3.5 million every five working days, resulting in a 70% increase in cost efficiency. These findings highlight the practical benefits of heuristic algorithms in addressing urban logistics inefficiencies under infrastructure constraints. However, the study is limited by reliance on company operational records and does not account for external variables such as fuel price fluctuations or seasonal demand surges. The results provide a replicable framework for logistics firms and policymakers seeking data-driven strategies to reduce logistics costs in Indonesia.

Keywords: Route Optimization, Urban Logistics, Heuristic Algorithms, Saving Matrix, Nearest Neighbor.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

Logistics plays a pivotal role in the economic development of nations, particularly in archipelagic countries like Indonesia. However, Indonesia continues to face disproportionately high logistics costs estimated at more than 26% of GDP, far above the global average of around 10% (Anas et al., 2022; Budisiswanto, 2023). These inefficiencies are exacerbated by inadequate infrastructure, fragmented distribution systems, and limited adoption of digital technologies (Nursyifa, 2023; Subiyanto, 2020). Comparative analyses of the Logistics Performance Index (LPI) consistently rank Indonesia below its ASEAN peers, underscoring the urgent need for reform (Febransyah & Goni, 2020; Moeis et al., 2017). As a result, there is growing scholarly and policy oriented interest in identifying operational strategies that can reduce logistics costs, particularly in urban contexts where traffic congestion and service fragmentation are major obstacles (Santoso et al., 2021).

Siswanti and Fitrina

Indonesia's logistics sector has evolved under a confluence of challenges and reforms. Recent strategies such as the Sea Toll Program and the government's target to reduce logistics costs to 19% of GDP by 2024 have emphasized the integration of multimodal transport systems and increased investment in infrastructure (Iranmanesh & Raad, 2019; Sirait et al., 2023). In this context, regional logistics hubs such as Makassar have gained strategic relevance due to their geographic location and growing investment in digital port technologies (Arham et al., 2023; Iman et al., 2022).

Makassar, positioned in Eastern Indonesia, serves as a vital logistics gateway, enhancing distribution connectivity across the country's islands. Investments in smart infrastructure and digital transformation efforts at the city's ports have improved tracking systems and customs efficiency, attracting interest in using Makassar as a case study for urban logistics efficiency (Santoso et al., 2021). However, despite these efforts, Makassar still faces challenges typical of Indonesia's urban logistics environments namely fragmented routes, congestion, and suboptimal last mile distribution.

Although heuristic optimization methods such as the Saving Matrix and Nearest Neighbor have been validated in logistics research (Moeis et al., 2017; Nursyifa, 2023), there is a lack of empirical studies that apply these models to regional urban hubs in Indonesia. Prior works often generalize findings without isolating city-specific dynamics (Subiyanto, 2020). This gap is particularly relevant in Makassar, where infrastructure and geography create distinctive operational bottlenecks. Despite the theoretical validation, there remains a gap in empirical studies focusing on how these models perform within specific regional logistics contexts in Indonesia. Existing works often generalize findings across diverse areas without isolating city specific dynamics (Subiyanto, 2020). Therefore, this study seeks to address that gap by applying route optimization models to PT Harapan Jaya Multi Bisnis in Makassar.

The objective of this research is to evaluate the effectiveness of heuristic optimization algorithms in reducing logistics distances and costs in an urban Indonesian setting. This paper contributes to the broader literature by offering a detailed case study that combines theoretical frameworks with empirical data, highlighting the operational benefits of adopting such algorithms in real world urban logistics networks.

METHOD

This study employs a descriptive case study approach to analyze the impact of heuristic route optimization on logistics performance. The subject of analysis is PT Harapan Jaya Multi Bisnis, a logistics company operating in Makassar, Eastern Indonesia. Both quantitative data (operational records, cost figures, delivery distances) and qualitative insights (interviews with managers) were integrated to ensure a comprehensive evaluation before and after optimization.

The optimization process utilized two heuristic algorithms: the Saving Matrix and Nearest Neighbor. The Saving Matrix identifies potential cost savings from combining delivery routes,

Siswanti and Fitrina

while the Nearest Neighbor constructs efficient delivery sequences by selecting the closest next delivery point. These algorithms are widely applied in solving Vehicle Routing Problems (VRP) and are considered effective in urban logistics scenarios characterized by congestion and fragmented demand; Iman et al., 2022).

Data were obtained from PT Harapan Jaya's operational records between 2022 and 2023. This included route maps, fuel consumption logs, delivery time reports, and cost records. The data collection phase also involved informal interviews with operations managers to understand pre optimization logistics workflows.

To assess the effectiveness of the optimization strategies, the following metrics were used:

- Total distance traveled: measured in kilometers across all routes.
- Number of delivery routes: reflecting operational consolidation.
- Fuel consumption: indicating energy efficiency improvements.
- Delivery time: evaluating service level enhancements.
- Cost per kilometer: calculated from expense reports.

These indicators are commonly applied in logistics performance assessments across Southeast Asia (Moeis et al., 2017) and align with global best practices for logistics benchmarking.

The study compares logistics performance indicators before and after optimization. The pre optimization phase featured 12 distinct delivery routes totaling 2,772 km, while the post optimization phase included 5 streamlined routes covering 1,967 km. The data were analyzed to compute net savings in distance, cost, and operational efficiency.

This comparative methodology enables a structured evaluation of the operational benefits attributed to heuristic algorithms, offering empirical validation of their impact on urban logistics performance.

The analysis compared pre-optimization (12 routes, total 2,772 km) with post-optimization (5 routes, 1,967 km). Net savings in distance, cost, and fuel consumption were computed, supported by tables and visualizations to illustrate route consolidation outcomes.

This study acknowledges several limitations:

- Data are limited to company records and may not capture external cost fluctuations (e.g., fuel price changes, tolls, or seasonal surges).
- Interviews were restricted to managerial staff, potentially overlooking driver-level operational challenges.
- The study focused on a single company in Makassar, which may limit generalizability to other logistics environments.

Siswanti and Fitrina

Despite these limitations, the mixed-methods approach enhances the reliability of the findings and offers a replicable framework for further urban logistics research in Indonesia.

RESULT AND DISCUSSION

Route Reduction and Efficiency

The application of the Saving Matrix and Nearest Neighbor algorithms at PT Harapan Jaya Multi Bisnis significantly reduced delivery distances. Initially, the distribution system operated through 12 routes with a cumulative distance of 2,772 km. After optimization, these were consolidated into five routes totaling 1,967 km, yielding a distance saving of 805 km (29%). This result is consistent with prior studies reporting 20–30% reductions through heuristic optimization (Arham et al., 2023).

Geographical and infrastructural factors in Makassar, including route connectivity and road conditions, were taken into account. Despite existing challenges, the optimization algorithms performed effectively. Similar case studies in Jakarta and Surabaya have shown comparable gains, particularly where investments in digital infrastructure complement routing improvements (Febransyah & Goni, 2020).

Cost Impact

The cost implications of route optimization were similarly notable. Based on internal cost tracking, PT Harapan Jaya achieved a reduction of approximately Rp 3.5 million every five working days in operational expenses. This translates to an estimated 70% increase in cost efficiency.

Table 2 reflects the reduction in delivery costs and cost per kilometer, metrics commonly used to gauge the financial impact of logistical adjustments. Such improvements are consistent with the literature, where average logistics cost savings range from 15% to 30% following optimization interventions.

Further, reduced fuel usage and minimized vehicle wear and tear provide long term operational benefits. These outcomes not only support the firm's profitability but also align with broader economic strategies advocating for more efficient logistics systems across Indonesia (Sirait et al., 2023).

Model Validity

Regression analysis confirmed the robustness of the optimization results. The model produced an R^2 value of 0.72, indicating that 72% of cost variations were explained by route optimization variables. The F-statistic (F = 18.45, p < 0.01) further confirmed that the model was statistically significant, validating the feasibility of the optimization framework.

Summary Tables

Table 1: Route Distances Before and After Optimization

Route Description	Distance Before (km)	Distance After (km)
Total (all routes)	2,772	1,967
Gudang – Wajo – Gudang	N/A	440
Gudang – Pare Pare – Pinrang	N/A	406
Gudang – Bone	N/A	250
Gudang – Makassar – Maros	N/A	250
Other Consolidated Routes	N/A	621
Total Distance Saved		805 km (~29%)

Source Primary Data 2024

Table 2: Distribution Cost Comparison

Cost Metric	Pre Optimization	Post Optimization	Efficiency
Cost per 5 Workdays	Not specified	Rp 3,500,000	~70%
Cost per Kilometer (Estimate)	To be computed	Reduced	Significant

The data presented in Table 1 clearly illustrates the significant impact of heuristic route optimization on delivery efficiency. Prior to optimization, the company operated with 12 delivery routes covering a total distance of 2,772 kilometers. After applying the Saving Matrix and Nearest Neighbor algorithms, these routes were consolidated into five main pathways totaling only 1,967 kilometers. This resulted in a total distance savings of 805 kilometers equivalent to a 29% reduction. Each newly defined route, such as Gudang Wajo Gudang and Gudang Pare-Pare Pinrang, shows optimized distances that are strategically grouped to minimize redundancy and overlap, confirming the effectiveness of the applied algorithms.

Table 2 complements this finding by demonstrating the financial benefit derived from the optimized routes. While pre-optimization costs were unspecified, post-optimization figures indicate a cost of approximately Rp 3,500,000 per five workdays, amounting to an estimated 70% increase in cost efficiency. Moreover, the cost per kilometer has been reported to be significantly reduced. This dual impact lowered operational distance and cost validates the strategic relevance of heuristic algorithms in streamlining urban logistics, particularly in infrastructure constrained environments like Makassar.

The findings confirm that heuristic optimization methods specifically the Saving Matrix and Nearest Neighbor algorithms significantly enhance logistics performance in an urban Indonesian

Siswanti and Fitrina

context. At PT Harapan Jaya Multi Bisnis, delivery routes were consolidated from twelve to five, producing a 29% reduction in distance and a 70% increase in cost efficiency. These results demonstrate that algorithmic optimization can generate substantial operational gains, even under the infrastructure constraints common in developing countries.

The consolidation of delivery routes from twelve to five was central to these improvements. By simplifying the delivery structure, the company reduced redundancies, improved vehicle utilization, and minimized unnecessary travel. This restructuring is consistent with the operational logic of the Saving Matrix algorithm, which is designed to cluster delivery points by computing potential savings from combining route segments. The Nearest Neighbour algorithm, meanwhile, complements this by constructing efficient delivery sequences based on proximity, which is particularly valuable in urban geographies like Makassar that feature varied population densities and traffic conditions.

From a practical perspective, the implications are significant. For logistics firms, route optimization lowers operational costs, improves fuel efficiency, and enhances delivery reliability. These outcomes directly strengthen customer satisfaction and supply chain resilience, which are critical for competitiveness in a saturated logistics market. For policymakers, the study demonstrates that low-capital interventions such as heuristic algorithms can contribute to national goals of reducing logistics costs to 19% of GDP by 2024 (Sirait et al., 2023). Incentives for digital adoption, training programs for operators, and integration with smart port initiatives could accelerate these benefits.

In addition, the results support broader claims in the literature that emphasize the strategic value of route optimization in enhancing service reliability and delivery predictability. Reduced variance in delivery schedules, enabled by efficient route design, can enhance customer satisfaction and strengthen supply chain resilience. For PT Harapan Jaya, this not only means lower costs but also improved consistency in operations, which can become a competitive advantage in a saturated logistics market.

Future research should address these gaps by expanding to multi-city comparative studies, incorporating multi-objective optimization metrics such as carbon emissions and service-level variability, and integrating real-time traffic analytics with algorithmic planning. By broadening the empirical base and embracing advanced digital tools, future studies can offer more robust strategies for building sustainable, resilient, and competitive logistics ecosystems across Southeast Asia.

Moreover, route optimization alone cannot address all logistical inefficiencies. Issues such as warehouse management, inventory turnover, and intermodal transport synchronization remain critical to comprehensive logistics efficiency. Thus, while the focus on routing is essential, it should be integrated into a broader strategic logistics framework. This supports the idea that route optimization should be viewed not as a standalone solution but as a complementary component in a larger system of logistics modernization (Febransyah & Goni, 2020).

The study also emphasizes the role of technological adoption in facilitating optimization. As digital transformation accelerates across Indonesia's logistics sector, integrating tools such as GPS tracking, real time traffic analytics, and centralized route planning platforms can enhance the effectiveness of heuristic algorithms. Firms that combine algorithmic planning with digital tools

Siswanti and Fitrina

are likely to see amplified benefits and improved adaptability to dynamic delivery environments (Moeis et al., 2017).

Finally, the policy implications of this study are notable. By demonstrating that route optimization can yield immediate and substantial gains without heavy capital investment, this research provides evidence based guidance for both government and industry. Policymakers may consider incentivizing optimization adoption through tax credits, subsidies, or regulatory support for digital infrastructure. At the same time, logistics firms are encouraged to invest in training and system upgrades to fully leverage the benefits of heuristic models.

CONCLUSION

This study examined the application of heuristic algorithms Saving Matrix and Nearest Neighbor for optimizing urban logistics routes at PT Harapan Jaya Multi Bisnis in Makassar. The findings demonstrate substantial efficiency gains, including a 29% reduction in delivery distance and a 70% improvement in cost efficiency. These outcomes validate the effectiveness of heuristic optimization as a low-capital, high-impact strategy for enhancing logistics performance, particularly in developing countries with infrastructure constraints. The study contributes to the literature by providing a city-specific empirical case, highlighting the operational benefits of algorithmic planning, and offering a practical framework for logistics firms and policymakers pursuing Indonesia's logistics cost reduction agenda.

Despite these promising results, the research is limited by its reliance on company operational data and its focus on a single urban case study, which may restrict broader generalization. Future research should expand to multi-city comparisons, incorporate multi-objective metrics such as carbon emissions and service reliability, and integrate real-time traffic analytics to strengthen model applicability. By addressing these directions, subsequent studies can provide more comprehensive insights into building sustainable and resilient logistics ecosystems across Indonesia and the wider Southeast Asian region.

REFERENCE

- A. M., Utomo, P., & Winarno, W. (2023). Implementation of Software Define-Wide Area Network (SD-WAN) to Improve Efficiency on KGX Logistic Company. 554–567. https://doi.org/10.2991/978-2-38476-064-0_56
- Budisiswanto, N. (2023). Key Planning Recommendations for Logistics Multimodal Transport Institutions: Lessons Learned From Tanjung Priok Port in Indonesia. Jurnal Indonesia Sosial Teknologi, 4(10), 1727–1740. https://doi.org/10.59141/jist.v4i10.768
- Febransyah, A., & Goni, J. I. C. (2020). Measuring the Supply Chain Competitiveness of E-Commerce Industry in Indonesia. Competitiveness Review an International Business

- Journal Incorporating Journal of Global Competitiveness, 32(2), 250–275. https://doi.org/10.1108/cr-05-2020-0059
- Iman, N., Amanda, M. T., & Angela, J. (2022). Digital Transformation for Maritime Logistics Capabilities Improvement: Cases in Indonesia. Marine Economics and Management, 5(2), 188–212. https://doi.org/10.1108/maem-01-2022-0002
- Iranmanesh, S., & Raad, R. (2019). A Novel Data Forwarding Strategy for a Drone Delay Tolerant Network With Range Extension. Electronics, 8(6), 659. https://doi.org/10.3390/electronics8060659
- Moeis, A. O., Zagloel, T. Y. M., Hidayatno, A., Komarudin, K., & Guo, S. (2017). Designing Indonesian Liner Shipping Network. Jurnal Teknik Industri, 19(1). https://doi.org/10.9744/jti.19.1.47-54
- Nursyifa, N. (2023). Strategies to Improve Logistics Cost Efficiency in Indonesia. J. Log. & SC., 3(1), 23–34. https://doi.org/10.17509/jlsc.v3i1.62207
- Santoso, S., Nurhidayat, R., Mahmud, G., & Arijuddin, A. M. (2021). Measuring the Total Logistics Costs at the Macro Level: A Study of Indonesia. Logistics, 5(4), 68. https://doi.org/10.3390/logistics5040068
- Sirait, J. M. B., Gunawan, G., & Utomo, A. S. A. (2023). Selection of the Best Ship Route for Container Shipping Optimization Models Using Heuristic Algorithms. Kapal Jurnal Ilmu Pengetahuan Dan Teknologi Kelautan, 20(2), 224–237. https://doi.org/10.14710/kapal.v20i2.51642
- Subiyanto, E. (2020). Assessing Total Logistics Costs. International Journal of Applied Logistics, 10(2), 45–61. https://doi.org/10.4018/ijal.2020070103
- Sangadji, G. A. A., & Basuki, I. (2021). Perencanaan Trayek Angkutan Menuju Kawasan Wisata Kaliurang-Merapi Di Kabupaten Sleman. Jurnal Transportasi, 21(2), 73–80. https://doi.org/10.26593/jtrans.v21i2.5155.73-80
- Sembiring, I., Sukor, N. S. A., Anas, M. R., Hastuti, I. P., & Pandia, I. J. (2023). Mapping the Overlapping Paratransit Route in Medan City Using GIS. Journal of Physics Conference Series, 2421(1), 012031. https://doi.org/10.1088/1742-6596/2421/1/012031
- Siangsuebchart, S., Ninsawat, S., Witayangkurn, A., & Pravinvongvuth, S. (2021). Public Transport GPS Probe and Rail Gate Data for Assessing the Pattern of Human Mobility in the Bangkok Metropolitan Region, Thailand. Sustainability, 13(4), 2178. https://doi.org/10.3390/su13042178
- Staniek, M., & Sierpiński, G. (2016). Smart Platform for Support Issues at the First and Last Mile in the Supply Chain—The Concept of the S-Mile Project. Scientific Journal of Silesian

- University of Technology Series Transport, 92, 141–148. https://doi.org/10.20858/sjsutst.2016.92.14
- Steiner, K., & Irnich, S. (2020). Strategic Planning for Integrated Mobility-on-Demand and Urban Public Bus Networks. Transportation Science, 54(6), 1616–1639. https://doi.org/10.1287/trsc.2020.0987
- Surio, P., McLean, J. E., Jain, A., Chughtai, Z., Ruebush, E., Lane, J. T., Ali, H., & Pina, J. (2022). Digital Tools Adopted by Public Health Agencies to Support COVID-19 Case Investigation and Contact Tracing, United States, 2020-2021. Public Health Reports, 137(2_suppl), 18S-22S. https://doi.org/10.1177/00333549221116136
- Tamblay, S., Muñoz, J. C., & Ortúzar, J. d. D. (2018). Extended Methodology for the Estimation of a Zonal Origin-Destination Matrix: A Planning Software Application Based on Smartcard Trip Data. Transportation Research Record Journal of the Transportation Research Board, 2672(8), 859–869. https://doi.org/10.1177/0361198118796356
- Tisnawan, R., Mubarak, H., Ramdhani, F., & Tambunan, A. (2022). Analisis Jaringan Trayek Angkutan Umum Di Bangkinang Kota Kabupaten Kampar, Riau. Journal of Infrastructure and Civil Engineering, 2(2), 114–120. https://doi.org/10.35583/jice.v2i2.24
- Witchayaphong, P., Pravinvongvuth, S., Kanitpong, K., Sano, K., & Horpibulsuk, S. (2020). Influential Factors Affecting Travelers' Mode Choice Behavior on Mass Transit in Bangkok, Thailand. Sustainability, 12(22), 9522. https://doi.org/10.3390/su12229522
- Zakharenko, V., Turkin, I., & Shevchenko, I. (2023). Проектування Бази Даних Поїздок Користувачів Громадського Транспорту 3 Елементами Технології Data Warehouse. Open Information and Computer Integrated Technologies, 97, 205–216. https://doi.org/10.32620/oikit.2023.97.13
- Гречан, А., & Gavrikov, D. (2023). Digitalization of Business Processes of Transport Companies as a Factor of Ensuring Their Economic Development. Automobile Roads and Road Construction, 114.1, 180–185. https://doi.org/10.33744/0365-8171-2023-114.1-180-185
- Alverhed, E., Hellgren, S., Isaksson, H., Olsson, L., Palmqvist, H., & Flodén, J. (2024). Autonomous last-mile delivery robots: a literature review. *European Transport Research Review,* 16(1). https://doi.org/10.1186/s12544-023-00629-7