

Unlocking Renewable Potential in Logistics Hubs: Policy Frameworks for Inclusive Energy Transitions

Loso Judijanto¹, Untung Lestari Nur Wibowo², Dimas Endrawan Putra³

IPOSS Jakarta, Indonesia¹

Akademi Penerbang Indonesia Banyuwangi, Indonesia²

Politeknik Penerbangan Jayapura, Indonesia³

Correspondent : losojudijantobumn@gmail.com¹

Received : June 3, 2025

Accepted : July 21, 2025

Published : July 31, 2025

Citation: Judijanto, L., Wibowo, U, L, N., Putra, D, E. (2025). Unlocking Renewable Potential in Logistics Hubs: Policy Frameworks for Inclusive Energy Transitions. *Logistica: Journal of Logistics and Transportation*. 3(3), 61-72.
<https://doi.org/10.61978/logistica.v3i3>

ABSTRACT: Logistics hubs play a vital role in global decarbonization due to their high energy use and strategic position within supply chains, yet they are often excluded from national renewable energy policies. This exclusion limits their potential to become active clean energy producers. This study examines the regulatory and institutional barriers that hinder renewable energy integration in logistics hubs and proposes an inclusive policy roadmap tailored for this sector—offering a novel contribution beyond prior studies focused on residential and industrial contexts. Using a comparative methodology, the research analyzes energy regulatory frameworks across Germany, Brazil, the UAE, Indonesia, and the United States. Data were collected from government reports, institutional documents, and peer-reviewed studies. A hybrid analytical framework combining stakeholder mapping and policy categorization was employed to identify existing gaps and opportunities. The findings show that logistics hubs are frequently excluded from mechanisms such as net metering, feed-in tariffs, and tax incentives due to outdated classifications that overlook their dual industrial-service roles. Case studies from Germany, Brazil, and the UAE highlight the effectiveness of targeted measures like grid fast-tracking, specific subsidies, and integrated municipal approaches in advancing renewable adoption. Furthermore, strong public-private partnerships and dynamic pricing systems are key to aligning logistics operations with renewable goals. The study concludes that infrastructure development must be complemented by policy innovation through harmonized, inclusive, and multi-level governance to embed logistics hubs effectively in renewable energy strategies.

Keywords: Logistics Hubs, Renewable Energy Policy, Regulatory Reform, Feed-In Tariff, Net Metering, Public-Private Partnership, Infrastructure Integration.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

In the context of rapidly advancing climate change and the urgent necessity for decarbonization, logistics hubs emerge as central actors in the effort to reduce global carbon emissions. These hubs, which form the backbone of regional and international supply chains, are increasingly recognized not only for their operational importance but also for their environmental impact. It is estimated that logistics accounts for approximately 10–14% of global greenhouse gas emissions, with logistics hubs serving as significant contributors due to their intensive freight movement and

energy consumption(Baskaran, 2024; Mo et al., 2024). Traditional distribution centers, often relying on outdated operational practices and lacking energy efficiency measures, are especially inefficient in a low-carbon economy, thereby exacerbating the supply chain's overall emissions footprint (“Selection Of Multi-Distribution Center Location Based On Low Carbon,” 2016).

As governments and industries intensify their commitment to sustainability, the need to transform logistics hubs into environmentally responsible entities has become apparent. Despite the urgency, these critical infrastructures are frequently neglected in renewable energy policy frameworks. While there is a growing global emphasis on the deployment of renewables, regulatory and incentive mechanisms often prioritize residential and commercial sectors, leaving the logistics industry underrepresented. This disconnect has delayed the incorporation of green energy practices in logistics operations, particularly within logistics hubs. The operational inefficiencies in these hubs are further exacerbated by resistance to technological change, limited capital investment, and a fragmented approach to infrastructure modernization (Ataseveri & Kose, 2024).

Notwithstanding these challenges, several countries have begun to develop frameworks that integrate logistics hubs into renewable energy strategies. These include targeted subsidies, microgrid development, and energy-sharing platforms that allow hubs to become producers and distributors of clean energy. Nonetheless, while these measures show potential, their implementation remains uneven and lacks international standardization. In countries such as Brazil, Germany, and the UAE, early-stage policy innovations offer valuable insights but are insufficiently scaled to inform global practice (Hammad et al., 2021; Jothi et al., 2024).

The principal barrier to renewable integration in logistics hubs lies in the policy misalignment between energy regulators and industrial stakeholders, a systemic issue this study analyzes comparatively across five national frameworks. While national energy strategies may support renewable adoption broadly, they often do not account for the operational and infrastructural specificities of logistics hubs. This regulatory oversight results in the systemic exclusion of logistics facilities from incentive structures such as feed-in tariffs, tax credits, and net metering schemes (Hammad et al., 2021). The absence of dedicated support mechanisms not only curtails the potential of logistics hubs to generate clean energy on-site but also reduces their ability to act as decentralized energy hubs within wider distribution networks (Aleem et al., 2022).

When integrated effectively, logistics hubs can serve as energy nexus points that connect various energy inputs and outputs within supply chains. Through the deployment of renewable technologies such as solar photovoltaics and energy storage systems, along with smart energy management platforms, logistics hubs are well-positioned to enhance energy resilience and support national decarbonization targets. The use of microgrids in urban logistics centers, for instance, has demonstrated potential for localized energy autonomy, reduced transmission losses, and enhanced reliability in energy delivery (Mansour-Saatloo et al., 2021; Trincone, 2024).

This growing body of empirical evidence underlines the importance of incorporating logistics hubs into national decarbonization strategies. Their strategic location, scale, and energy demand make them ideal candidates for renewable deployment. However, this potential remains underutilized

due to regulatory inertia and the lack of coordinated institutional frameworks. The result is a fragmented energy landscape where logistics hubs are peripheral rather than central to energy transition efforts (Perera et al., 2017).

In light of these findings, this study aims to examine current regulatory frameworks and identify policy innovations that can catalyze renewable energy integration in logistics hubs. By analyzing global best practices and policy shortcomings, it proposes a strategic roadmap for inclusive regulatory reform. The study's novelty lies in its sector-specific focus, bridging a critical gap between energy policy and logistics infrastructure. It offers actionable insights to policymakers, logistics operators, and energy stakeholders seeking to transform logistics hubs into vital components of a sustainable and decarbonized energy system.

METHOD

This study adopts a qualitative and comparative methodological framework to evaluate the regulatory and institutional mechanisms that influence renewable energy integration within logistics hubs. The research design integrates three key approaches: comparative case study analysis, stakeholder mapping, and institutional policy assessment, drawing from both primary policy sources and secondary literature. The Net-Map method was selected for stakeholder analysis due to its ability to visualize power relations and decision pathways among logistics and energy actors, offering richer insights than standard matrix-based mapping approaches.

The primary analytical method involves a comparative policy analysis of five countries: Germany, Brazil, the United Arab Emirates (UAE), Indonesia, and the United States. These countries were selected due to their diverse energy regulatory environments, varying levels of logistics sector development, and contrasting approaches to renewable energy integration. Comparative case studies are particularly effective in energy policy research for identifying best practices, regulatory bottlenecks, and policy transferability (Krasniqi, 2024).

In line with Popescu et al. (2024), a hybrid framework was applied that integrates energy consumption metrics and carbon emissions coefficients relevant to logistics operations. This approach enables the quantification of emissions profiles and potential reductions through policy implementation. Quantitative elements support the broader qualitative narrative by grounding analysis in empirically measurable outcomes. The inclusion of time-series assessments further enhances understanding of how policy reforms correlate with emissions performance over time (Nascimento & Höhne, 2023).

Stakeholder mapping serves as a complementary method to uncover institutional dynamics, power structures, and collaborative potentials within the logistics–energy policy nexus. The study utilizes the Net-Map methodology (Buccini et al., 2020), which visualizes actor relationships, influence levels, and information flows. This approach facilitates a nuanced understanding of the multi-actor

environment involved in the regulatory process, including energy ministries, logistics operators, grid authorities, and financial agencies.

Data were collected from national energy plans, legal and regulatory texts, industrial energy use reports, and international agency publications (e.g., IEA, UNCTAD). Where applicable, industry-specific documentation, such as logistics sector emissions reports and renewable project case files, were also reviewed. To ensure reliability and replicability, document selection was based on publication credibility, relevance to logistics hubs, and policy specificity.

The integration of stakeholder analysis into the case study framework enabled the identification of common barriers, such as regulatory fragmentation and institutional misalignment, and highlighted enabling conditions, such as fiscal incentives and fast-track grid permitting. This dual perspective allowed the study to contrast high-performance systems (e.g., Germany and Brazil) with less developed regulatory environments (e.g., Indonesia), thereby distilling both universal principles and context-specific recommendations.

In conclusion, this multi-method approach allows for a comprehensive exploration of how policy instruments operate within distinct governance systems to support or hinder renewable energy uptake in logistics hubs. It provides a robust foundation for constructing policy roadmaps tailored to the operational realities and institutional structures of diverse national contexts.

RESULT AND DISCUSSION

Regulatory Exclusion of Logistic Hubs

The regulatory exclusion of logistics hubs from renewable energy incentives is largely attributable to outdated policy categorizations that fail to reflect their high energy intensity and operational complexity. As highlighted by SÖYLEMEZ & Söylemez (2024), existing frameworks often classify energy users in rigid segments, such as residential, commercial, or industrial, without distinct consideration for the logistics sector. This results in logistics hubs falling between definitions, rendering them ineligible for incentives such as feed-in tariffs, net metering, or renewable energy credits (Reynolds, 2024).

However, several countries have revised their classifications to include logistics hubs under renewable schemes. In Germany and the Netherlands, recent changes permit logistics operators to qualify for RECs and subsidized renewable infrastructure, including electric vehicle charging stations (Pratama et al., 2024; Situmorang, 2023). Furthermore, some policies have introduced metrics that realign logistics energy consumption with emission reduction targets, signaling a more inclusive policy direction.

Despite progress, segmentation by firm size continues to create barriers. Logistics hubs are frequently categorized either as SMEs or large energy consumers, omitting operational nuance. As noted by Mudhoffar & Magriasti (2024), this leads to exclusion from nuanced, sector-targeted

incentive schemes. In contrast, progressive frameworks have started defining logistics as a stand-alone energy sector, deserving tailored instruments (Cann, 2021).

Empirical evidence shows that excluded hubs demonstrate lower renewable adoption rates and higher operational costs (Sonjaya & Noch, 2024). They are also less likely to invest in energy-efficient systems, thus prolonging their carbon-intensive status ((Chen & Musango, 2022).

Institutional and Bureaucratic Barriers

Multiple regulatory bodies including energy commissions, transport ministries, and environmental authorities are involved in logistics-related energy governance (Krasniqi, 2024). Often, their overlapping jurisdictions lead to fragmented policymaking. For example, in the United States, DOE and EPA collaborate but have divergent agendas, causing inefficiencies in energy transition initiatives (Okwanya et al., 2020).

Permit processing delays represent another barrier. Prolonged timelines reduce investor confidence and stall implementation (Hermanto, 2018). A delayed return on investment discourages energy innovation within hubs (Martínez et al., 2018), and contributes to greenhouse gas stagnation (Henriques et al., 2024).

Furthermore, institutional misalignment among ministries is well-documented in Indonesia and the Philippines, where energy and transport regulations often conflict, undermining coordinated sustainability goals (Weidner, 2022). This misalignment hinders the integration of sustainable technologies in logistics operations (Chen & Musango, 2022).

Absence of coordinating institutions also constrains transitions. Without a unified entity overseeing energy-logistics policy integration, projects like microgrids or on-site renewables face logistical and regulatory setbacks (Situmorang, 2023). EU member states that employ transition coordinators have shown greater success in aligning logistics and energy strategies.

Best Practice Case Studies

Germany's reform enabling simplified grid access and feed-in incentives for logistics hubs is a model of effective integration (Suharto & Tando, 2021). Provisions include decentralized grid entry and solar subsidies, increasing logistics sector participation in renewable markets.

In Brazil, logistics-focused subsidies for renewable adoption in freight services and warehouse systems ranging from tax relief to biofuel investments have led to measurable emissions reductions (Wogwu & Wogwu, 2024).

The UAE's Dubai South framework links logistics development with renewable adoption via financial incentives, especially for solar energy deployment. This has led to lower operational costs and enhanced sustainability metrics (Lazaro & Baba, 2023).

These case studies demonstrate policy-driven increases in renewable energy adoption and emissions decline (Yudha et al., 2018), offering scalable models for broader international application.

Policy Tools and Impact

Policy instruments such as feed-in premiums, RECs, and ITCs have proven critical for logistics hubs, helping mitigate high operational costs and facilitating renewable infrastructure investments (Iswanto & Pamungkas, 2023).

Dynamic pricing, including time-of-use rates, has encouraged load shifting, improving energy efficiency and cost management in logistics hubs (Quintana et al., 2021).

Public-private partnerships have also enabled scalable deployment of clean technologies. These collaborations unlock financing and support technology transfer, leading to economic, social, and environmental co-benefits.

Finally, industrial feed-in premiums offer financial stability by guaranteeing returns on renewable generation, incentivizing investment and broadening participation among logistics operators (Simpson, 2017).

The integration of renewable energy into logistics hubs represents a crucial strategy in the pursuit of decarbonization. However, regulatory and institutional frameworks have not fully adapted to accommodate the unique characteristics of logistics operations. A rethinking of energy governance is necessary one that not only aligns climate goals with operational realities but also embraces inclusivity and technological sophistication.

Frameworks for designing inclusive energy regulations must account for both vertical and horizontal policy integration. As noted by Kettner and Kletzan-Slamanig (2020), climate policy integration is vital to ensure coherence across environmental and energy domains. Their framework emphasizes feedback mechanisms and adaptive governance to enable responsive and effective policymaking. Equally important is the multi-level governance model, which facilitates harmonization between national, regional, and municipal levels of government (Cherp et al., 2018). This model recognizes the socio-economic diversity of regions and promotes energy equity through decentralized policy design (Kadiri et al., 2022). Smart technologies, such as IoT-based monitoring and predictive analytics, further support inclusive design by tailoring solutions to local energy profiles (Solaymani, 2021).

Harmonizing energy policy across jurisdictions remains a persistent challenge, particularly where multiple ministries and agencies oversee intersecting mandates. Inter-ministerial coordination platforms can align priorities between energy, transport, and environmental sectors (Chang & Lo, 2022). Cross-border energy cooperation initiatives, as practiced in the EU and parts of Southeast Asia, illustrate how shared infrastructure and investment frameworks can bridge regulatory gaps (Pamadi & Sari, 2022). Adopting such models at the national level can standardize objectives and reduce policy fragmentation. The EU's common market approach also demonstrates how

collective adherence to unified standards can facilitate synchronization across heterogeneous policy systems (Ponce et al., 2020).

Municipal governments serve as key enablers of energy transitions at the logistics hub level. They hold jurisdiction over zoning, urban planning, and local infrastructure, which allows them to implement renewable-friendly regulations tailored to logistics needs (Cullen, 2016). Municipalities also play a role in bridging community interests and industry operations by fostering stakeholder engagement and offering participatory planning platforms (Xie et al., 2023). Through financial incentives, permitting flexibility, and transparency mandates, municipalities can stimulate private-sector participation in energy transformation (Terrier et al., 2023). These localized efforts align with broader national goals when embedded within multi-level governance frameworks.

The debate between policy incentives and infrastructure investment is less a dichotomy and more a synergy. Incentives such as tax credits and feed-in tariffs effectively reduce financial barriers to renewable adoption. However, without concurrent infrastructure development such as smart grids, on-site generation facilities, and energy storage the impact of these policies remains limited (Griffiths, 2017). Smart grid systems, in particular, enable logistics hubs to dynamically manage supply and demand, enhancing their capacity to integrate distributed renewables (Ayuketah et al., 2024).

Comparative assessments reveal that regions with coordinated policy and infrastructure frameworks experience accelerated transitions (Neupane et al., 2022). Incentives catalyze adoption, but infrastructure solidifies the outcomes. The path forward thus requires a dual strategy: deploying targeted incentives while investing in enabling infrastructure. Regulatory design must reflect this interdependence, positioning logistics hubs not just as energy consumers but as active participants in energy generation and management.

In conclusion, inclusive, harmonized, and infrastructure-backed regulatory systems are imperative to unlock logistics hubs' renewable potential. This research highlights that policy coherence, supported by enabling infrastructure and inter-ministerial alignment, determines the success of logistics energy transitions.

CONCLUSION

Logistics hubs represent pivotal yet underutilized infrastructures in the global renewable energy transition. Despite their substantial energy consumption and centrality within supply chains, they remain largely excluded from most renewable energy policy frameworks. This study demonstrates that such exclusion limits opportunities for emissions reduction, energy resilience, and sustainable innovation. Comparative evidence from Germany, Brazil, and the UAE illustrates that well-designed regulatory reforms such as grid access facilitation, renewable subsidies, and integrated municipal incentives can transform logistics hubs into decentralized energy producers and key nodes in low-carbon networks.

The findings underscore that policy innovation must advance alongside physical infrastructure development. Tailored incentives, inter-agency coordination, and active municipal participation

are critical to realizing these transitions. Furthermore, harmonization across jurisdictions and sectors ensures policy coherence and scalability. By emphasizing governance reform rather than solely technological solutions, this study provides a strategic roadmap for integrating logistics hubs into national decarbonization agendas, reaffirming their potential as engines of sustainable economic transformation and energy resilience.

REFERENCE

Ataseveri, M., & Kose, B. (2024). Sustainable Transformation in Logistics: Environmental Innovations and Human-Centered Strategies. *Ftsess*, 1(4), 201–210. <https://doi.org/10.69888/ftsess.2024.000353>

Ayuketah, Y., Edimu, M., Mwikirize, C., Nsanyuy, W. B., & Ngole, E. B. (2024). Policy Perspectives of the Renewable Energy Landscape in Cameroon: Status, Drivers, Challenges and Enabling Frameworks. *Energies*, 17(23), 5810. <https://doi.org/10.3390/en17235810>

Baskaran, T. (2024). From Smart Cities to Green Supply Chains: A New Era of Logistics. *The Management Accountant Journal*, 41–45. <https://doi.org/10.33516/maj.v59i9.41-45p>

Buccini, G., Harding, K. L., Eguiluz, I. F., Safon, C. B., Hromi-Fielder, A., Cosío, T. G. d., & Pérez-Escamilla, R. (2020). An Analysis of Stakeholder Networks to Support the Breastfeeding Scale-Up Environment in Mexico. *Journal of Nutritional Science*, 9. <https://doi.org/10.1017/jns.2020.4>

Cann, H. W. (2021). Policy or Scientific Messaging? Strategic Framing in a Case of Subnational Climate Change Conflict. *Review of Policy Research*, 38(5), 570–595. <https://doi.org/10.1111/ropr.12438>

Chang, C.-H., & Lo, S. (2022). Impact Analysis of a National and Corporate Carbon Emission Reduction Target on Renewable Electricity Use: A Review. *Energies*, 15(5), 1794. <https://doi.org/10.3390/en15051794>

Chen, X.-Q., & Musango, J. K. (2022). A Conceptual Approach to the Stakeholder Mapping of Energy Lab in Poor Urban Settings. *Sustainability*, 14(10), 6233. <https://doi.org/10.3390/su14106233>

Cherp, A., Vinichenko, V., Jewell, J., Brutschin, E., & Sovacool, B. K. (2018). Integrating Techno-Economic, Socio-Technical and Political Perspectives on National Energy Transitions: A Meta-Theoretical Framework. *Energy Research & Social Science*, 37, 175–190. <https://doi.org/10.1016/j.erss.2017.09.015>

Cullen, R. (2016). Evaluating Renewable Energy Policies. *Australian Journal of Agricultural and Resource Economics*, 61(1), 1–18. <https://doi.org/10.1111/1467-8489.12175>

Griffiths, S. (2017). Renewable Energy Policy Trends and Recommendations for GCC Countries. *Energy Transitions*, 1(1). <https://doi.org/10.1007/s41825-017-0003-6>

Hammad, M., Elgazzar, S., & Sternad, M. (2021). A Conceptual Framework to Establish and Operate a Global Logistics Energy Hub. *Sustainability*, 13(19), 10976. <https://doi.org/10.3390/su131910976>

Henriques, L., Castro, C., Prata, F., Leiva, V., & Venegas, R. (2024). Modeling Residential Energy Consumption Patterns With Machine Learning Methods Based on a Case Study in Brazil. *Mathematics*, 12(13), 1961. <https://doi.org/10.3390/math12131961>

Hermanto, A. (2018). Modeling of Geothermal Energy Policy and Its Implications on Geothermal Energy Outcomes in Indonesia. *International Journal of Energy Sector Management*, 12(3), 449–467. <https://doi.org/10.1108/ijesm-11-2017-0011>

Iswanto, D., & Pamungkas, D. B. (2023). Increasing Public Participation in the 2024 Elections: A Stakeholders Mapping Analysis Approach. *Journal of Transformative Governance and Social Justice*, 1(2), 55–67. <https://doi.org/10.26905/j-tragos.v1i2.9854>

Jothi, E., Abbas, A. H. R., Bisht, D., Mani, A., Velusudha, N. T., & Dhabliya, D. (2024). Distributed Generation Planning in Multi-Energy Microgrids. *E3s Web of Conferences*, 540, 10017. <https://doi.org/10.1051/e3sconf/202454010017>

Kadiri, K. O., Jamiu, A. M., & Abdulsalam, A. O. (2022). Development of an Intelligent Smart Hub Renewable Generation System (ISHRGS) for Both Urban and Rural Centres in Offa, Kwara State. *Journal of Engineering Research and Reports*, 7–18. <https://doi.org/10.9734/jerr/2022/v23i217592>

Krasniqi, I. (2024). Evaluating Strategic Approaches to Energy Transition: Leadership, Policy, and Innovation in European Countries. *EiS*, 90(3), 929. <https://doi.org/10.34659/eis.2024.90.3.929>

Lazaro, S. A. M., & Baba, V. F. (2023). Who Is Responsible for Developing Energy Policy Interventions in Mozambique? A Stakeholder Analysis and Social Network Analysis. *International Journal of Energy Sector Management*, 18(5), 1041–1065. <https://doi.org/10.1108/ijesm-07-2023-0007>

Mansour-Saatloo, A., Agabalaye-Rahvar, M., Mirzaei, M. A., Mohammadi-Ivatloo, B., Zare, K., & Anvari-Moghaddam, A. (2021). A Hybrid Robust-stochastic Approach for Optimal Scheduling Of interconnected Hydrogen-based Energy Hubs. *Iet Smart Grid*, 4(2), 241–254. <https://doi.org/10.1049/stg2.12035>

Mo, A., Zhang, Y., Xiong, Y., Ma, F., & Lin, S. (2024). Energy–Logistics Cooperative Optimization for a Port-Integrated Energy System. *Mathematics*, 12(12), 1917. <https://doi.org/10.3390/math12121917>

Mudhoffar, K., & Magriasti, L. (2024). Ekonomi Politik Energi Terbarukan: Peluang Dan Tantangan Di Indonesia. *Multiverse Open Multidisciplinary Journal*, 3(1), 47–52. <https://doi.org/10.57251/multiverse.v3i1.1382>

Nascimento, L., & Höhne, N. (2023). Expanding Climate Policy Adoption Improves National Mitigation Efforts. *NPJ Climate Action*, 2(1). <https://doi.org/10.1038/s44168-023-00043-8>

Neupane, N., Chaudhary, P., Rijal, Y., Ghimire, B., & Bhandari, R. (2022). The Role of Renewable Energy in Achieving Water, Energy, and Food Security Under Climate Change Constraints in South Asia. *Frontiers in Sustainable Food Systems*, 6. <https://doi.org/10.3389/fsufs.2022.1016093>

Okwanya, I., Alhassan, A., Migap, J. P., & Adeka, S. S. (2020). Evaluating Renewable Energy Choices Among Rural Communities in Nigeria. An Insight for Energy Policy. *International Journal of Energy Sector Management*, 15(1), 157–172. <https://doi.org/10.1108/ijesm-12-2019-0001>

Pamadi, M., & Sari, Y. A. (2022). Challenges of Developing a Logistics Hub Case Study: Batu Ampar Port. *Jurnal Tataloka*, 24(3), 249–256. <https://doi.org/10.14710/tataloka.24.3.249-256>

Perera, A. T. D., Nik, V. M., Mauree, D., & Scartezzini, J. (2017). Electrical Hubs: An Effective Way to Integrate Non-Dispatchable Renewable Energy Sources With Minimum Impact to the Grid. *Applied Energy*, 190, 232–248. <https://doi.org/10.1016/j.apenergy.2016.12.127>

Ponce, P., Oliveira, C., Álvarez, V., & María de la Cruz del Río-Rama. (2020). The Liberalization of the Internal Energy Market in the European Union: Evidence of Its Influence on Reducing Environmental Pollution. *Energies*, 13(22), 6116. <https://doi.org/10.3390/en13226116>

Popescu, C.-A., Ifrim, A. M., Silvestru, C. i., Dobrescu, T. G., & Petcu, C. (2024). An Evaluation of the Environmental Impact of Logistics Activities: A Case Study of a Logistics Centre. *Sustainability*, 16(10), 4061. <https://doi.org/10.3390/su16104061>

Pratama, M. B. P., Taufiqurokhman, T., & Yusuf, M. N. (2024). Sinergi Kebijakan Ekonomi Dan Lingkungan: Menuju Pembangunan Berkelanjutan Synergy of Economic and Environmental Policies: Towards Sustainable Development. *Pencerah Publik*, 11(2), 50–61. <https://doi.org/10.33084/pencerah.v11i2.8731>

Quintana, S., Huang, P., Han, M., & Zhang, X. (2021). A Top-Down Digital Mapping of Spatial-Temporal Energy Use for Municipality-Owned Buildings: A Case Study in Borlänge, Sweden. *Buildings*, 11(2), 72. <https://doi.org/10.3390/buildings11020072>

Reynolds, S. (2024). *Examining the Impact of Digital Transformation on Supply Chain Processes*. <https://doi.org/10.20944/preprints202406.0221.v1>

Shady H. E. Abdel Aleem, Ali, Z. M., Zobaa, A. F., Calasan, M., & Rawa, M. (2022). Editorial: Energy Hubs in Modern Energy Systems With Renewables and Energy Storage. *Frontiers in Energy Research*, 10. <https://doi.org/10.3389/fenrg.2022.1014252>

Simpson, G. (2017). Solar Power and Policy Powerlessness – Perceptions of Persuasion in Distributed Residential Solar Energy Policy Development. *Renewable Energy and Environmental Sustainability*, 2, 14. <https://doi.org/10.1051/rees/2017024>

Situmorang, B. (2023). The Political Economy of Indonesia's Renewable Energy Sector and Its Fiscal Policy Gap. *Ijefms*, 08(05), 01–04. <https://doi.org/10.55640/ijefms-9122>

Solaymani, S. (2021). A Review on Energy and Renewable Energy Policies in Iran. *Sustainability*, 13(13), 7328. <https://doi.org/10.3390/su13137328>

Sonjaya, Y., & Noch, M. Y. (2024). Analysis of the Effectiveness of Tax Incentives on Energy Sector Investments. *Advances in Taxation Research*, 2(2). <https://doi.org/10.60079/atr.v2i2.308>

Suharto, D. G., & Tando, C. E. (2021). Investment Policy and Environmental Conservation: A Systematic Literature Review on the Form of Investment Policy and Stakeholders Role. *Top Conference Series Earth and Environmental Science*, 905(1), 012112. <https://doi.org/10.1088/1755-1315/905/1/012112>

Terrier, C., Loustau, J. R. H., & Maréchal, F. (2023). *From Local Energy Communities Towards National Energy System: A Grid-Aware Techno-Economic Analysis*. <https://doi.org/10.52202/069564-0305>

Trincone, B. (2024). Hydrogen Corridors in Europe: Strategies and Countries Involved. *European Transport/Trasporti Europei*, 98, 1–14. <https://doi.org/10.48295/et.2024.98.11>

Weidner, W. (2022). Structuring Multi-stakeholder Participation to Increase the Impact of Dementia Research. *Alzheimer & Dementia*, 18(S11). <https://doi.org/10.1002/alz.059394>

Wogwu, V., & Wogwu, K. (2024). Stakeholder Engagement in Green Energy Governance of Selected Organization in Nigeria. *International Journal of Strategic Research in Education Technology and Humanities*, 12(1), 1–19. <https://doi.org/10.48028/ijprds/ijsrth.v12.i1.01>

Xie, F., Yan, W., & Zhou, X. (2023). *Research on the Construction of Cross-Border Logistics Hub Network of Western China Along the Belt and Road*. <https://doi.org/10.3233/atde230039>

Yudha, S. W., Tjahjono, B., & Kolios, A. (2018). A PESTLE Policy Mapping and Stakeholder Analysis of Indonesia's Fossil Fuel Energy Industry. *Energies*, 11(5), 1272. <https://doi.org/10.3390/en11051272>