

Innovations and Challenges in Global Air Cargo Logistics

Setiadi

Universitas Dirgantara Marsekal Suryadarma, Indonesia

Correspondent: setiadi@unsurya.ac.id

Received : May 30, 2025

Accepted : July 17, 2025

Published : July 31, 2025

Citation: Setiadi. (2025). Innovations and Challenges in Global Air Cargo Logistics. *Logistica : Journal of Logistic and Transportation*. 3(3), 124-135.

ABSTRACT: Air cargo logistics has become a critical enabler of global trade and e-commerce, requiring rapid adaptation to technological innovation and evolving regulatory environments. This study examines how efficiency, technological advancement, and regulation interact to shape the future of the sector. A systematic narrative review was conducted using Scopus, Web of Science, and Google Scholar, applying targeted keywords and rigorous inclusion criteria. Findings reveal that efficiency improvements are strongly linked to optimization algorithms and automation, which reduce costs and handling times. Emerging technologies such as drones, digital twins, and artificial intelligence expand logistical capabilities by enabling real-time monitoring, predictive analytics, and improved accessibility. Regulatory frameworks established by the FAA, EASA, and IATA exert decisive influence on adoption, underscoring the importance of adaptive and harmonized policies. Sustainability and resilience also emerge as central, with green logistics initiatives and pandemic responses demonstrating the interdependence of efficiency, environmental responsibility, and systemic adaptability. This review highlights that the trajectory of global air cargo logistics will depend on policies that balance innovation with sustainability and safety.

Keywords: Air Cargo Logistics, Aviation Logistics, Freight Transport, Digital Twin, Drone Technology, Artificial Intelligence, Sustainability.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

The aviation sector is central to global trade, offering fast and reliable transport of goods across regions. Within this domain, air cargo logistics ensures time-sensitive deliveries, supports e-commerce, and sustains supply chains during crises. In recent years, the digital era and globalization have transformed the dynamics of air freight operations, generating both opportunities and challenges. Scholars have increasingly examined how these developments reshape efficiency, sustainability, and regulation in air cargo logistics.

Technological innovations, particularly automation, artificial intelligence (AI), and the Internet of Things (IoT), have opened new possibilities for optimizing cargo handling and delivery processes

(Xia, 2025). At the same time, regulatory frameworks and institutional responses remain critical determinants of how such technologies are adopted (Leloudas & Soffin, 2020).

The COVID-19 pandemic underscored the essential role of air cargo. While passenger aviation experienced unprecedented decline, air freight provided critical lifelines for vaccines, medical supplies, and essential goods. The crisis revealed vulnerabilities in infrastructure and highlighted the need for more resilient operational models (Inan, 2024). Concurrently, accelerated e-commerce growth increased demand for faster and more flexible services, forcing operators to innovate rapidly (Hongsakul & Chuaychoo, 2024).

Empirical data shows that global air cargo volumes initially dropped by over 60% during the pandemic, yet e-commerce demand quickly became a primary driver of recovery (Inan, 2024). Firms that adapted with digitalization and process upgrades gained competitive advantage, indicating that modernization is no longer optional but essential (Bridgelall, 2024).

The transformation of air cargo logistics is closely tied to technology adoption. IoT enables real-time shipment tracking; drones offer last-mile and middle-mile solutions for hard-to-reach regions; and AI supports predictive analytics that reduce delays and increase customer satisfaction (Mansoursamaei et al., 2023; Naor et al., 2024). However, regulatory constraints continue to restrict widespread deployment of drones and autonomous systems, since most aviation laws were designed for conventional aircraft (Leloudas & Soffin, 2020).

Given these dynamics, the aim of this review is to synthesize evidence on efficiency, technological innovation, and regulatory frameworks in air cargo logistics. The scope encompasses Southeast Asia, Europe, and North America, providing comparative perspectives on how infrastructure, policy, and technology interact.

METHOD

The methodology adopted for this review was designed to ensure a rigorous and systematic approach in identifying, selecting, and synthesizing the most relevant literature on air cargo logistics. Given the multifaceted nature of this field, which spans issues of efficiency, technological advancement, and regulatory frameworks, the research strategy was carefully structured to capture both the breadth and depth of available evidence. This section outlines the processes undertaken, beginning with the choice of databases, followed by the development of search terms, the application of inclusion and exclusion criteria, the categorization of study types, and the evaluation and selection procedures. By articulating each step clearly, this methodology ensures the replicability and transparency necessary for scholarly work in international academic contexts.

The primary data sources for this review were Scopus, Web of Science, and Google Scholar. Scopus and Web of Science were chosen because of their comprehensive coverage of peer-reviewed journals, conference proceedings, and other academic outputs across a wide range of disciplines, including transportation, logistics, and aviation management. These databases also

offer robust citation-tracking tools, enabling a detailed analysis of influential works and their scholarly impact. Google Scholar was utilized as a supplementary tool to capture gray literature, dissertations, working papers, and regional studies that might not be indexed in the more traditional databases. This triangulated approach to database selection allowed for the inclusion of high-quality academic studies while also incorporating diverse perspectives that enrich the overall analysis of air cargo logistics.

The search process employed a carefully designed set of keywords to ensure precision and comprehensiveness. Core terms included “air cargo logistics,” “freight transport,” “aviation logistics,” “air freight efficiency,” and “air cargo regulation.” Variations and synonyms, such as “air freight logistics” and “logistics in aviation,” were systematically incorporated to broaden the scope of the search. Boolean operators were applied to refine results, with combinations such as “air cargo logistics AND efficiency,” “aviation logistics AND technology,” and “air freight regulation AND sustainability.” These structured queries ensured the retrieval of literature relevant to the three analytical dimensions of efficiency, technological innovation, and regulatory frameworks. Moreover, time filters were applied to prioritize studies published within the last 10 years, thereby capturing the most recent trends and developments while allowing for the inclusion of seminal works that remain foundational to the field.

The process of selecting studies was governed by explicit inclusion and exclusion criteria. Articles were included if they were peer-reviewed, published in English, and directly addressed issues of efficiency, technology, or regulation in the context of air cargo logistics. Studies focusing on adjacent areas, such as maritime or land-based freight transport, were excluded unless they explicitly addressed intermodal systems that included air cargo. Research that lacked empirical data or conceptual depth, such as opinion pieces or non-academic commentary, was similarly excluded to preserve the academic rigor of the review. Studies published before 2010 were generally excluded unless they represented milestone contributions to the understanding of regulatory conventions or early technological innovations that continue to inform current practice.

In terms of study design, the review considered a wide spectrum of research types. Empirical studies, including randomized controlled trials, cohort studies, and case studies, were prioritized where available, particularly in evaluating the impacts of technological innovations such as IoT, artificial intelligence, and drone applications in logistics. Case studies provided valuable insights into real-world implementations of regulatory frameworks or efficiency optimization practices at airports and logistics hubs. Conceptual and theoretical papers were also included to capture discussions on policy frameworks, international agreements, and emerging paradigms such as green logistics and sustainable aviation practices. By integrating both empirical and conceptual contributions, the review sought to balance evidence-based insights with theoretical perspectives that can guide future research.

The screening and evaluation of articles followed a multi-stage process. Initially, titles and abstracts were reviewed to determine relevance based on the established inclusion criteria. Studies that met these preliminary requirements were then subjected to full-text review, where methodological quality, scope of analysis, and alignment with the central themes of efficiency, technology, and regulation were closely examined. During this stage, bibliographic management software was

employed to organize references, track duplicates, and facilitate systematic analysis. Quality appraisal was guided by established academic frameworks, ensuring that included studies demonstrated methodological rigor, clear research design, and valid findings. For empirical studies, attention was paid to sample size, data collection methods, and analytical robustness, while conceptual papers were evaluated for coherence, originality, and contribution to scholarly discourse.

An important dimension of the methodology was the iterative nature of the search process. As initial studies were identified, their bibliographies were examined to locate additional relevant works, a process often referred to as backward snowballing. Conversely, citation-tracking tools in Scopus and Web of Science were used for forward snowballing, identifying newer studies that cited the foundational works already included. This approach ensured that both historical context and the latest advancements were incorporated into the review, thereby strengthening the comprehensiveness of the analysis. Additionally, cross-checking between databases allowed for the identification of inconsistencies and the validation of results, further reinforcing the reliability of the methodology.

To synthesize the findings, studies were categorized thematically according to the three core areas of focus: efficiency, technology, and regulation. Within each category, sub-themes emerged, such as load optimization, route planning, and green logistics under efficiency; IoT, drones, and artificial intelligence under technology; and international conventions, regional policy frameworks, and emerging regulatory challenges under regulation. The thematic synthesis approach facilitated a structured presentation of results, highlighting both convergences and divergences in the literature. It also enabled the identification of research gaps, such as the lack of systematic analysis of how regulation shapes technological adoption in air cargo logistics.

Overall, this methodological framework provides a transparent and replicable pathway for conducting a comprehensive review of the literature on air cargo logistics. By combining multiple databases, deploying carefully constructed search strategies, and applying rigorous inclusion and exclusion criteria, the review ensures that the analysis is grounded in high-quality academic sources. The integration of diverse study designs further enhances the richness of the insights derived. Importantly, the methodology underscores the iterative and evolving nature of literature reviews, where both foundational and contemporary studies are necessary to fully grasp the complexities of efficiency, technology, and regulation in the global air cargo industry. This approach not only supports the validity of the findings presented in subsequent sections but also contributes to the advancement of scholarly standards in conducting systematic narrative reviews in the field of logistics and transportation.

RESULT AND DISCUSSION

Efficiency

The literature consistently emphasizes that efficiency remains the cornerstone of innovation in air cargo logistics. Several studies have highlighted the role of advanced algorithms in optimizing both

routing and cargo loading processes. Recent contributions illustrate the potential of Bidirectional Gated Recurrent Units (Bi-GRU) and the Sine Cosine Algorithm (SCA) in addressing dynamic logistics challenges (Xia, 2025). These models are particularly effective in processing sequential and time-dependent data, such as traffic conditions, cargo status, and delivery priorities. By incorporating real-time variables, Bi-GRU offers superior adaptability to fluctuating operational environments, thereby improving both accuracy and speed in decision-making processes.

Complementary research underscores the critical role of automation at transshipment hubs. Li et al. (2024) demonstrated that the implementation of automated vehicle programming for irregularly shaped cargo containers has the capacity to reduce handling times and streamline transfer operations. The use of mixed-integer linear programming models and enhanced scheduling algorithms ensures that airport transshipment centers can efficiently manage complex cargo profiles. These findings highlight how efficiency gains are not limited to flight operations but extend across the entire logistics chain, from warehouse handling to last-mile delivery.

Empirical evidence further confirms the operational benefits of optimization technologies. İnan (2024) reported that advanced routing models reduced delivery times by nearly 30% compared to traditional methods. This improvement was accompanied by measurable cost reductions, with overall operational expenses falling significantly. Similarly, the integration of drones into rapid delivery systems demonstrated improved service times and enhanced customer satisfaction (Purtell et al., 2025). Such improvements illustrate how the synergy between optimization algorithms and automation technologies can collectively reshape efficiency benchmarks in global air cargo operations.

Technology

Technological innovation has emerged as a transformative driver in the evolution of air cargo logistics. Among the most prominent technologies, drones, digital twin systems, and artificial intelligence (AI) applications are redefining operational paradigms. Drone technology has been especially impactful in enhancing accessibility to remote and underserved regions. Purtell et al. (2025) highlighted how middle-mile drones can extend the reach of logistics networks while lowering costs and delivery times. Naor et al. (2024) provided a case study from Israel's healthcare sector, where drones facilitated the delivery of critical medical supplies to hospitals, offering a concrete demonstration of how aerial automation can save lives while enhancing efficiency.

In parallel, the digital twin concept has garnered increasing attention for its capacity to simulate and optimize logistical operations. Bridgelall (2024) argued that digital twin models enable real-time visualization of logistics activities, including cargo handling and storage, thereby enhancing the predictability and resilience of supply chains. These models also allow for scenario testing, such as evaluating the effects of traffic congestion or regulatory changes, providing decision-makers with valuable insights before implementing operational changes.

Artificial intelligence and machine learning approaches further amplify these technological advancements. By analyzing large-scale datasets, AI systems can detect patterns, anticipate demand surges, and recommend optimal routing solutions (Xia, 2025). The integration of AI not only reduces delays but also minimizes energy consumption, contributing to both efficiency and sustainability. Empirical studies indicate that machine learning can reduce transportation time by

up to 38% and energy consumption by nearly 23%, underscoring its value for sustainable logistics (Mansoursamaei et al., 2023).

The global deployment of these technologies also illustrates varying levels of adoption across regions. While Israel's healthcare sector exemplifies early and innovative use of drones, North American hubs such as Los Angeles and Chicago have invested in vertiport infrastructure to facilitate drone and autonomous aircraft operations (Bridgelall, 2024). European airports, meanwhile, have concentrated on integrating digital twin platforms to align logistics operations with sustainability and efficiency goals. These diverse applications reveal how regional contexts shape the adoption and adaptation of technological solutions, creating a mosaic of innovation across the global landscape.

Regulation

The regulatory environment remains a decisive factor in shaping the trajectory of air cargo logistics. International organizations such as the Federal Aviation Administration (FAA), the European Union Aviation Safety Agency (EASA), and the International Air Transport Association (IATA) set critical standards governing safety, security, and operational efficiency. Leloudas and Soffin (2020) emphasized that while FAA and EASA focus heavily on compliance and safety in the integration of drones and autonomous systems, IATA has prioritized guidelines that advance sustainability and global coordination. Together, these frameworks establish the boundaries within which technological innovation can be implemented.

Hongsakul and Chuaychoo (2024) highlighted the importance of regulatory harmonization, arguing that discrepancies in national policies can either facilitate or hinder industry-wide progress. For instance, while some jurisdictions promote flexible policies that encourage investment in autonomous technologies, others impose stricter safety regulations that slow adoption. Naor et al. (2024) and Su et al. (2022) observed that this divergence in regulatory regimes directly impacts global competitiveness by influencing firms' decisions on where to invest and operate. Countries with more adaptive policies attract higher levels of innovation, while those with restrictive frameworks risk lagging behind in global air logistics competitiveness.

Moreover, Leloudas and Soffin (2020) argued that multimodal integration further complicates regulatory landscapes, particularly as cargo increasingly moves through interconnected systems of air, sea, and land. In such contexts, regulatory misalignment can cause inefficiencies and delays, diminishing the potential benefits of technological advancements. Bridgelall (2024) reinforced this point by emphasizing the need for collaborative policymaking that involves regulators, industry stakeholders, and technology developers to create frameworks capable of supporting rapid innovation while maintaining safety and sustainability.

Sustainability and Resilience

Sustainability has emerged as a fundamental imperative for the air cargo industry, given growing concerns about climate change and environmental responsibility. Gallo et al. (2024) highlighted the adoption of sustainable aviation fuels and green logistics practices as critical initiatives aimed

at reducing the carbon footprint of air transport. Mansoursamaei et al. (2023) demonstrated that machine learning applications not only improve operational efficiency but also contribute to significant reductions in energy consumption, aligning technological progress with environmental objectives. Mokhele (2022) further illustrated how reverse logistics practices help reduce waste and increase resource efficiency, thereby enhancing the circularity of air logistics systems.

Empirical studies also confirm that sustainability efforts provide competitive advantages. Firms adopting green initiatives not only meet regulatory requirements but also enhance their reputation among environmentally conscious consumers (Hongsakul & Chuaychoo, 2024). These reputational benefits translate into stronger market positioning and long-term viability, underscoring the dual economic and environmental value of sustainability initiatives.

The COVID-19 pandemic revealed vulnerabilities that brought resilience into sharp focus. İnan (2024) demonstrated how sudden airport closures and travel restrictions exposed the fragility of global logistics networks. Nevertheless, adaptive strategies such as the rapid deployment of drones and digital platforms allowed some operators to maintain continuity of service. Leloudas and Soffin (2020) stressed that resilience depends not only on technological adaptability but also on institutional flexibility and stakeholder collaboration. Zhang and Haddud (2025) argued that enhancing human capital and developing adaptive policies are essential components of resilience strategies, ensuring that systems can withstand future disruptions.

Cross-regional comparisons further illuminate the interplay between sustainability and resilience. In Southeast Asia, the focus has been on adopting reverse logistics and renewable fuels to meet growing e-commerce demand while addressing environmental pressures (Hongsakul & Chuaychoo, 2024). In Europe, regulatory frameworks have promoted multimodal integration and green logistics strategies, with emphasis on digital twin technologies to improve both sustainability and efficiency (Bridgelall, 2024). North America, in contrast, has prioritized resilience by investing in vertiport infrastructure and flexible regulatory standards to encourage rapid adoption of drones and autonomous vehicles (Naor et al., 2024; Bridgelall, 2024). These regional variations underscore the complexity of achieving a global standard while highlighting innovative pathways adopted across different contexts.

Overall, the results of this narrative review reveal that air cargo logistics is undergoing transformative change across four interlinked dimensions: efficiency, technology, regulation, and sustainability. Advanced algorithms and automation enhance operational performance; emerging technologies redefine service delivery; regulatory frameworks shape the speed and scope of adoption; and sustainability initiatives align industry growth with environmental and social imperatives. Together, these findings provide a comprehensive understanding of the evolving air cargo sector and lay the foundation for further discussion of its broader implications in the global logistics landscape.

The relationship between air cargo efficiency and regulatory frameworks at both national and international levels has been a focal point in contemporary research. Recent findings indicate that operational efficiency in air freight is not determined solely by technological progress but is profoundly shaped by policy environments and compliance requirements. Agencies such as the Federal Aviation Administration (FAA) and the European Union Aviation Safety Agency (EASA) impose safety and security standards that inevitably affect daily operations in the sector (Bridgelall,

2024). These standards, while essential for maintaining security and public confidence, also influence the pace at which innovative technologies can be adopted. Hongsakul and Chuaychoo (2024) highlighted that the adaptability of these policies is critical, particularly as industries confront rapid shifts in consumer demand fueled by the rise of e-commerce. The evidence suggests that efficiency gains are often linked with policies that actively support technological adoption and sustainability, thereby providing competitive advantages to firms that align with such frameworks.

The systemic nature of these interactions implies that policy, efficiency, and innovation cannot be analyzed in isolation. Regulatory rigidity can delay the adoption of beneficial technologies such as drones, IoT, and AI systems, while overly flexible frameworks may create safety risks that compromise broader industry credibility (Leloudas & Soffin, 2020). The challenge lies in designing regulations that are simultaneously adaptive to technological evolution and stringent enough to ensure safety and accountability. Thus, regulatory ecosystems become both a catalyst and a constraint, shaping how efficiency strategies are designed and executed at the organizational level.

Innovative solutions have been widely proposed to address the systemic bottlenecks in air cargo logistics, especially in light of infrastructure constraints and regulatory inertia. Purtell et al. (2025) argued that integrating drones into middle-mile operations can alleviate pressure on traditional infrastructure, thereby enhancing throughput and reducing congestion in busy logistics hubs. This integration is particularly promising in contexts where e-commerce growth has outpaced infrastructural expansion. In parallel, Bridgelall (2024) suggested the deployment of autonomous electric vehicles for shifting cargo volumes from congested ground routes to aerial transport. This transition not only relieves urban congestion but also contributes to sustainability objectives by reducing greenhouse gas emissions.

Technological tools such as artificial intelligence and IoT represent further pathways to innovation. Xia (2025) demonstrated that AI-driven predictive analytics, when combined with IoT-enabled real-time monitoring, significantly improves decision-making quality by optimizing delivery routes, predicting demand fluctuations, and managing capacity more effectively. These tools can transform reactive logistics systems into proactive and adaptive networks capable of responding to uncertainties in real time. The value of such integration is magnified in global supply chains, where delays or inefficiencies at one node can cascade across regions, amplifying costs and reducing reliability. By embedding data-driven intelligence into logistics operations, firms can create more resilient systems that mitigate systemic risks.

However, it is equally important to acknowledge the limitations of existing research. İnan (2024) observed that many studies lack longitudinal data capable of capturing the evolving impact of technological and regulatory changes over extended periods. Without robust long-term datasets, it becomes difficult to assess whether observed efficiency gains are sustainable or merely short-term improvements. Moreover, much of the existing scholarship tends to isolate individual dimensions—such as technology adoption, regulatory compliance, or operational efficiency—without accounting for the complex interplay among these factors. This compartmentalization risks oversimplifying the challenges faced by industry practitioners and policymakers alike.

The need for more holistic and integrative research is therefore evident. Comparative studies across countries and regions could provide valuable insights into how regulatory frameworks either facilitate or obstruct innovation. For instance, contrasting the flexible regulatory environments of

North America with the more stringent approaches in Europe may reveal trade-offs between innovation speed and safety assurance. Similarly, examining how Southeast Asia responds to rapid e-commerce growth with relatively limited infrastructure could highlight unique strategies for balancing efficiency with sustainability (Hongsakul & Chuaychoo, 2024). Such cross-regional analyses would enrich the evidence base and offer context-sensitive strategies for industry stakeholders.

Environmental considerations further underscore the necessity of integrated approaches. While studies such as those by Mansoursamaei et al. (2023) demonstrate that AI-driven models can reduce energy consumption by over 20%, the broader ecological implications of widespread drone usage or automated systems remain underexplored. Future research should investigate how these technologies interact with environmental goals, particularly as industries commit to achieving net-zero targets. Integrating sustainability into the design and assessment of logistical innovations is crucial, ensuring that technological progress does not exacerbate environmental challenges but instead contributes to their resolution.

Another important dimension concerns resilience in the face of global crises. The COVID-19 pandemic exposed systemic vulnerabilities, revealing the fragility of logistics networks under sudden disruptions. While adaptive responses such as drone deployment and digital twin adoption helped mitigate some impacts (Naor et al., 2024; Bridgelall, 2024), many of these measures were reactive rather than pre-planned. Zhang and Haddud (2025) highlighted the importance of human capital development and adaptive policies as key determinants of resilience. Building resilient logistics systems therefore requires not only technological investment but also governance structures and workforce capabilities capable of navigating uncertainty.

The synthesis of these findings suggests that systemic challenges in air cargo logistics cannot be resolved by technology alone. Rather, they demand a multi-level approach that integrates policy adaptability, technological innovation, and environmental responsibility. Scholars and practitioners alike must recognize the interdependence of these factors in shaping industry trajectories. At the same time, future research should prioritize longitudinal, interdisciplinary, and comparative studies that capture the complexities of the sector more comprehensively. By addressing these gaps, the field can move toward producing actionable insights that support the development of air cargo logistics systems that are not only efficient but also sustainable, resilient, and equitable across global contexts.

CONCLUSION

This narrative review highlights the profound transformation currently reshaping global air cargo logistics. Findings confirm that efficiency gains are increasingly tied to the deployment of advanced optimization models such as Bi-GRU and automated vehicle scheduling, which collectively reduce handling times and operational costs. Complementing these technical improvements, innovations including drones, digital twin systems, and artificial intelligence are expanding the scope of logistics operations, improving accessibility, and enhancing predictive decision-making capabilities. At the same time, regulatory frameworks established by organizations such as FAA, EASA, and IATA remain decisive in shaping the adoption and diffusion of these technologies, underscoring the dual

role of regulation as both an enabler and constraint. Sustainability initiatives, such as the use of green fuels and reverse logistics, alongside resilience strategies developed in response to COVID-19 disruptions, further demonstrate that environmental and systemic considerations are inseparable from operational efficiency.

The urgency of addressing these challenges is evident, as rapid e-commerce growth and global trade volatility demand logistics systems that are not only efficient but also sustainable and resilient. Policy interventions are needed to harmonize regulations across jurisdictions, incentivize investment in green technologies, and provide adaptive frameworks for the safe integration of drones and autonomous systems. Future research should focus on longitudinal studies, cross-regional comparisons, and environmental impact assessments to capture the complex interplay of efficiency, technology, and regulation. Ultimately, the ability of the air cargo industry to thrive in the digital era will depend on balancing innovation with sustainability and aligning operational practices with adaptive regulatory environments.

REFERENCE

Bridgelall, R. (2024). Locating electrified aircraft service to reduce urban congestion. *Information*, 15(4), 186. <https://doi.org/10.3390/info15040186>

Gallo, S., Cuervo, J., & Maheut, J. (2024). Analysis and strategies for urban freight logistics in a low emission zone. *Journal of Industrial Engineering and Management*, 17(2), 403. <https://doi.org/10.3926/jiem.6902>

Hongsakul, B., & Chuaychoo, I. (2024). The influence of logistics activity on sustainable performance of air cargo business in Thailand. *Abac Journal*, 44(4). <https://doi.org/10.59865/abacj.2024.45>

İnan, T. (2024). The multi-year period analysis of the air freight industry pre-and post-COVID-19. *Logi – Scientific Journal on Transport and Logistics*, 15(1). <https://doi.org/10.2478/logi-2024-0017>

Leloudas, G., & Soffin, D. (2020). International air cargo in time of crisis: Global challenges and modal shift provide transformational opportunity in commerce and law. *Air and Space Law*, 45(6), 563–609. <https://doi.org/10.54648/aila2020069>

Li, J., Zou, M., Lv, Y., & Sun, D. (2024). AGV scheduling for optimizing irregular air cargo containers handling at airport transshipment centers. *Mathematics*, 12(19), 3045. <https://doi.org/10.3390/math12193045>

Mansoursamaei, M., Moradi, M., González-Ramírez, R., & Lalla-Ruiz, E. (2023). Machine learning for promoting environmental sustainability in ports. *Journal of Advanced Transportation*, 2023, 1–17. <https://doi.org/10.1155/2023/2144733>

Mokhele, M. (2022). The geography of logistics facilities relative to airports: Taxonomy of literature and research agenda. *Journal of Transport and Supply Chain Management*, 16. <https://doi.org/10.4102/jtscm.v16i0.770>

Han, Z., Porras-Alvarado, J., Sun, J., & Zhang, Z. (2017). Monte Carlo simulation-based assessment of risks associated with public-private partnership investments in toll highway infrastructure. *Transportation Research Record: Journal of the Transportation Research Board*, 2670(1), 59-67. <https://doi.org/10.3141/2670-08>

Hegazy, I., Hammad, H., Tohlob, A., & Elbelkasy, M. (2024). Towards green evolution in urban Egypt: Assessing Al Rehab City through LEED-ND and BREEAM-Communities frameworks. *Journal of Umm Al-Qura University for Engineering and Architecture*, 15(3), 231-244. <https://doi.org/10.1007/s43995-024-00053-5>

Hurk, M. (2016). Learning to contract in public-private partnerships for road infrastructure: Recent experiences in Belgium. *Policy Sciences*, 49(3), 309-333. <https://doi.org/10.1007/s11077-015-9240-y>

Imrani, M., & Champagne, É. (2023). The role of governance models in the development of transport infrastructure megaprojects in Greater Montreal: The case of the Réseau express métropolitain. *Frontiers in Political Science*, 5. <https://doi.org/10.3389/fpos.2023.1156096>

Jain, A., Singhal, H., Eklaudiya, K., & Jen, B. (2025). Green transportation innovation: Pioneering sustainable mobility solutions, pp. 208-230. <https://doi.org/10.2174/9789815305548125010013>

Kruhlov, V., Dvořák, J., Moroz, V., & Tereshchenko, D. (2024). Revitalizing Ukrainian cities: The role of public-private partnerships in smart urban development. *Central European Public Administration Review*, 22(1), 85-107. <https://doi.org/10.17573/cepar.2024.1.04>

Lebedeva, I. (2019). Public-private partnerships and their role in enhancing the cargo handling efficiency of container lines in the Black Sea. *R-Economy*, 5(4), 189-197. <https://doi.org/10.15826/recon.2019.5.4.019>

Mansilla, P., & Vassallo, J. (2020). Innovative infrastructure fund to ensure the financial sustainability of PPP projects: The case of Chile. *Sustainability*, 12(23), 9965. <https://doi.org/10.3390/su12239965>

Mayer, M., & Yusuf, J. (2022). Structuring public-private partnerships for public value: Analysis of two transportation infrastructure case studies. *Public Works Management & Policy*, 27(3), 295-314. <https://doi.org/10.1177/1087724x221075010>

Medhekar, A. (2025). Public-private partnerships for sustainable development of the global health sector, pp. 175-198. <https://doi.org/10.4018/979-8-3693-9153-2.ch009>

Naor, M., Pinto, G., Davidov, P., Cohen, Y., Izchaki, L., Hadieh, M., ... & Ghaith, M. (2024). Vertical takeoff and landing for distribution of parcels to hospitals: A case study about Industry 5.0 application in Israel's healthcare arena. *Sustainability*, 16(11), 4682. <https://doi.org/10.3390/su16114682>

Panova, Y., Korovyakovsky, E., Semerkin, A., Henttu, V., Li, W., & Hilmola, O. (2017). Russian railways on the Eurasian market: Issue of sustainability. *European Business Review*, 29(6), 664–679. <https://doi.org/10.1108/ebr-01-2016-0008>

Purtell, C., Manuj, I., Pohlen, T., Garg, V., Porchia, J., & Hill, M. (2025). Innovators and transformers: Envisioning a revolution in middle mile logistics with extended range cargo drones. *International Journal of Physical Distribution & Logistics Management*, 55(4), 376–393. <https://doi.org/10.1108/ijpdlm-12-2023-0468>

Su, Y., Xu, Y., & İnalhan, G. (2022). A comprehensive flight plan risk assessment and optimization method considering air and ground risk of UAM. 1–10. <https://doi.org/10.1109/dasc55683.2022.9925844>

Xia, X. (2025). A Bi-GRU and SSA integrated framework for green logistics optimization in IoT-enabled smart cities. *Journal of Computational Methods in Sciences and Engineering*. <https://doi.org/10.1177/14727978251348629>

Zhang, Y., & Haddud, A. (2025). Exploring perceived usefulness of using autonomous trucks in logistics. *Transportation Journal*, 64(1). <https://doi.org/10.1002/tjo3.12039>