Lingua: Journal of Linguistics and Language

E-ISSN: 3032-3304

Volume. 3 Issue 1 March 2025

Page No: 17-37

Generative-Cognitive Model of Linguistic Structure and Thought Process in the Kazakh Language

Fauziya Shamsiqyzy Orazbaeva¹, Ainagul Duisenbekkyzy Ryskulova², Elmira Nurlanovna Orazaliyeva³, Aitzhamal Kalkenovna Rauandina⁴
Abai Kazakh National Pedagogical University, Kazakhstan¹²⁴
The academy of public administration under the President of the Republic of Kazakhstan, Kazakhstan³

Correspondent: ainagul031084@gmail.com²

Received: February 28, 2025

Accepted: March 15, 2025

Published : March 31, 2025

Citation: Orazbaeva, F, Sh., Ryskulova, A, D., Orazaliyeva, E, N., & Rauandina, A, K. (2025). Generative-Cognitive Model of Linguistic Structure and Thought Process in the Kazakh Language. Lingua: Journal of Linguistics and Language, 3(1), 17-37. https://doi.org/10.61978/lingua.v3i1

ABSTRACT: Kazakh is a Turkic language with agglutinative morphology and relatively free word order. This feature makes it ideal for studying how syntax and semantics interact in language processing. Unlike languages with fixed word order, Kazakh signals semantic roles mainly through case affixes, which challenges traditional grammatical models. To investigate the interaction between syntax and semantics in Kazakh, we combined corpusbased semantic annotation with neurophysiological data. Our corpus comprises 1,200 sentences from classical Kazakh literature by Abai, Zhumabaev, and Auezov, annotated using the UCCA and PropBank frameworks, while metaphors were identified via the Metaphor Identification Procedure VU (MIPVU). Additionally, we performed a meta-analysis of 15 event-related potential (ERP) and fMRI studies on Turkic languages conducted between 2010 and 2024 to support our findings. Results show that approximately 98.3% of semantic roles (e.g., agent, patient) remain identifiable across varied word orders, demonstrating strong semantic stability despite syntactic variation. Based on these findings, we propose the Cognitive-Semantic Matching Model (CSMM), a generativecognitive framework in which grammatical affixes and conceptual metaphors work together to support comprehension. This framework integrates generative syntax with cognitive semantics and offers insights relevant to linguistic theory, cognitive neuroscience, and natural language processing for agglutinative languages.

Keywords: Kazakh Language, Agglutinative Morphology, Semantic Roles, Conceptual Metaphor, Event-Related Potentials.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

Kazakh is a Turkic language with strong agglutinative morphological structure, which allows gradually adding several suffixes, each with a different grammatical meaning, to produce words.

Kazakh nouns contain seven number forms and inflect for seven grammatical cases—nominative, genitive, accusative, and so on. Unlike languages with set word order, Kazakh mostly employs case suffixes to express grammatical connections, so it has great freedom in how sentence fragments could be organized. For example, rearranging the subject and object placements in "The student read the book at the university" will maintain the necessary meaning even if it will change the morphological markers. Case ends that indicate topicalization emphasize occasional deviations from the typical subject-object-verb (SOV) pattern of the language.

Measurements of event-related potentials (ERPs) via electroencephalography (EEG) provide crucial new perspectives on language processing time. A recent scientometric review spanning 25 years of neuroimaging research underscores the growing integration of cognitive neuroscience methods in the study of spoken language processing (Sauppe et al., 2021; Zhu & Wang, 2024). This trend motivates the combined corpus-based and ERP methodology employed in our investigation of Kazakh language processing. Unexpected or contradicting interpretations intensify the negative wave known as the N400 component, which peaks around 400 milliseconds following a stimulus. The P600 component of the brain's response to corrected grammatical mistakes shows up as a positive wave around 600 milliseconds following a stimulus. These ERP signals taken together provide complementary information on how the brain understands meaning and structure in real-time language processing.

According to the notion of conceptual metaphor, abstract concepts are often communicated by means of linguistic metaphors grounded on tangible, daily happenings (Lakoff, 1987). This theory has been supported by numerous neuroimaging studies demonstrating how metaphor comprehension engages specific brain networks (Bohrn et al., 2012). Sometimes English speakers employ spatial metaphors—like "the days ahead"—to help explain temporal ideas, including the future. This theoretical paradigm suggests that grasping figurative language requires fundamental semantic integration mechanisms in the brain. Despite most of ERP research in Indo-European languages, few studies have looked at the neurocognitive processes in agglutinative languages with variable grammar, such as Kazakh. Moreover, the link between the handling of metaphorical language and important conceptual image is little studied. This work investigates how conceptual metaphors are understood by Kazakh speakers using semantic and grammatical ERP data.

Questions:

- How does the brain's reaction (N400 and P600) to metaphor comprehension change with Kazakh's strong case marking?
- How can semantic integration and syntactic reanalysis find expression in brain signals?
- Which mental mechanisms help one to grasp metaphors more easily?

Examining these problems and tying Kazakh language processing to more general neurocognitive results gives this study vital new insights for linguistics and neuroscience.

Generative and cognitive approaches constitute fundamental pillars of Western linguistic theory.

Generative and cognitive approaches constitute fundamental pillars of Western linguistic theory. Noam Chomsky's generative grammar views language as an innate mental function. It distinguishes between "I-language" - internal, subconscious grammar - and "E-language" - what we say (Chomsky, 1965). Generative semantics has further shown that meaning is not "tacked on" at the end but is born already in the process of constructing each sentence (Lakoff, 1971). Cognitive linguistics adds to the discussion an important aspect of corpus and experience: conceptual metaphors demonstrate how we make sense of the abstract. Generative semantics formalizes the mapping of deep structures through concrete images (Lakoff & Johnson, 1980), while cognitive grammar emphasizes that even morphology and syntax are infused with semantics (Langacker, 2008). Effective integration of syntactic and semantic information during language comprehension necessitates the incorporation of contextual cues, which guide the interpretation of sentence meaning (Altmann & Steedman, 1988). Neurolinguistics looks at which parts of the brain are active when we process language, and studies using ERP show that the emotional aspects of metaphor affect how quickly and deeply we understand things. Together, these lines of research offer a comprehensive view of the relationship between language and cognition, contributing to improved teaching of metaphor in ESL (Friederici, 2020).

The view of Kazakh thinkers on language and thought through cognitive and neurolinguistic interpretation

The traditional Kazakh philosophical system of thought, alongside Western linguistic theories, provides a detailed description of the inextricable link between language and thought, as well as between language and national consciousness. The views of Kazakh thinkers on language are most often formulated not in a formal scientific context but in a philosophical, ethical, spiritual, and historical-cultural context. However, the content of these reflections is fully consistent with modern cognitive and brain process concepts.

Abai Kunanbayev's ideas reflect the semantic depth and integrity of thought

The statement, "The meaning of a word and the soul of a person are twins" (Abai, 1993), illustrates the cognitive dimension of lexical representation. For Abai, a word is not just a sign but a reflection of a concept contained in the human mind. This relationship directly correlates with the neurolinguistic concept of "mental representation." Put simply, the semantic networks activated in the brain during speech confirm Abai's idea of the "twin nature of words and souls" (Friederici, 2020). Similarly, other Kazakh intellectuals have expanded on the link between language, cognition, and national identity.

Mirzhakyp Dulatov discusses the relationship between language and the national conceptual system

Dulatov's opinion that "language is the heart of a nation" (Dulatov, 2002) reflects the organic connection between language and consciousness. While this idea bears similarities to linguistic relativism, it delves deeper, presenting language as a vehicle for transmitting collective cognitive structures. In neurolinguistics, this connection is explained by "collective neural coding," where people in a society think in similar ways, leading to similar brain activity.

Akhmet Baitursynov's work discusses the neurolinguistic consistency of structure and thinking

Akhmet Baitursynov's phrase, "Speech is an external manifestation of human thought" (Baitursynov, 2013), emphasizes the direct connection between language and cognitive activity. This statement echoes the modern theory of internal and external speech processes at the neurolinguistic level. According to Levelt's model (Levelt, 1999), human thought is first processed at the conceptual level and then goes through the stages of grammatical coding and articulation. Baitursynov's statement is an artistic expression of this cognitive mechanisms sequence. In a similar vein, Aimauytov emphasized the psychological and educational role of language in shaping the national character, reinforcing its cognitive and social function (Aimauytov, 1995).

Magzhan Zhumabaev discusses language as a cognitive weapon for humans

Zhumabaev wrote: "Language is one of the most important manifestations of humanity, one of the main tools of man. A people that has lost its language is doomed to extinction" (Zhumabaev, 1992). This idea shows the function of language as a cognitive tool. Modern science studies this process by examining the connection between language and the executive functions of the brain (Pulvermüller, 2018). The "weapon" that Maqian refers to is a symbol of cognitive concepts realised through speech.

Alikhan Bokeikhan viewed language as a neuro-national code

Alikhan Bokeikhan stated: "The loss of language is the first sign of the disappearance of a nation. A people who lose their language lose their very existence" (Bokeikhan, 1913). This point of view emphasizes the importance of language as a means of preserving and transmitting national identity. From a neurolinguistic perspective, language is seen not only as a mirror of individual cognitive processes but also as a mechanism that shapes common neural structures within a community.

Similarities with neurolinguistic and cognitive theories

The views of Kazakh thinkers on language and consciousness align with the fundamental principles of cognitive, neural activity, and semantic linguistics. These ideas prove that language is not just a system of signs but a key to the processes of thinking and meaning formation. We can

see each of the Kazakh thinkers' statements as a national interpretation of contemporary neuroand cognitive concepts.

The fusion of Eastern and Western ideas leads to a culturally conditioned model of generative semantics

Synthesizing Eastern and Western traditions lets us build a culturally determined generative semantics model. Chomsky described universal grammatical structures, Lakoff and Langacker linked language to cognitive mechanisms, and Kazakh thinkers added morality, spirituality, and national identity. Our study combines generative-semantic schemes, neurolinguistics, and the Kazakh philosophical-cultural system to create a model that reflects the cultural code and shows how language and identity shape meaning. Thus, we get a new theoretical vector that encodes Kazakh cognitive experience into universal linguistic theories with cultural specificity. Culturally oriented generative semantics deeply considers national symbolism and collective thinking, following poststructuralist, sociocultural, and cognitive trends. Cognitively organized deep roles (agent, subject, addressee, or process) are syntactically realized by surface structures, linking form and meaning.

METHOD

This study is based on a mixed methodological approach. It combines qualitative analysis of Kazakh literary texts, quantitative corpus analysis, and typological comparison. For statistical analysis, we utilized Bayesian multilevel modeling implemented via the 'brms' package and Stan programming language, which provide robust estimates for complex linguistic data (Burkner, 2017; Carpenter et al., 2017). The methodology is based on theories of generative semantics, cognitive linguistics, and neurocognitive models of language processing. The aim was to investigate how semantic roles are morphologically encoded in Kazakh. It also explores whether they are preserved when the surface word order varies, in particular in comparison with Turkish.

The source data included 1,200 Kazakh sentences with different syntactic orders. These were manually selected and annotated from contemporary literary sources (e.g., Qara sozder by Abay, Abay zholy by M. Auezova, poems by M. Zhumbayev, and philosophical texts by Sh. Kudaibirdiuly and I. Zhansugirov).

It was also selected 300 Turkish sentences from open corpora, such as the Turkish National Corpus, for cross-linguistic comparison, ensuring case and sentence structure control. All sentences were annotated using UCCA (Universal Conceptual Cognitive Annotation) to identify semantic roles. MIPVU (Vrije Universiteit Metaphor Identification Procedure) was used for metaphorical analysis.

To ensure linguistic and stylistic diversity, literary examples from Kazakh texts were selected based on several criteria. Only canonical authors were included in the analysis. These include Abai Kunanbayev, Mukhtar Auezov, Magzhan Zhumabayev, Shakarim Kudaiberdiev, and Ilyas

Zhansugurov. Their works are considered representative examples of classical Kazakh prose and poetry.

The selection of fragments was based on several linguistic features. Among them were syntactic variation, such as standard and non-standard word order, morphological richness, and the presence of metaphorical language. Priority was given to sentences that had a clearly expressed agent-patient structure. Clear case marking was also an important criterion. These features made it possible to annotate semantic roles uniformly.

The corpus included both narrative and philosophical texts. This ensured genre diversity and took into account the specific characteristics of discourse. Each sentence was manually annotated according to semantic roles: agent, topic, recipient, source, instrument, and locative. Morphological markers (case endings, verb forms) were taken into account. Cases of inversion and fronting were also identified to see if word order affects role identification.

In metaphorical analysis, the MIPVU procedure was used to identify conceptual metaphors and classify them according to source domain and target domain (e.g., emotion = substance, life = path). It also helped construct a cognitive structure.

To formalise the transition from internal meaning to external expression, researchers constructed the Cognitive-Semantic Model of Correspondence (CSMM). It includes: (1) Deep level (cognitive roles and intentions); (2) Morphological realization (case forms, verb markers); (3) Surface structure (syntactic realisation). The model was illustrated with tables and diagrams based on real examples from Kazakh fiction.

Neurocognitive meta-analysis

We conducted a meta-analysis of published ERP studies (evoked brain potentials), specifically the N400 and P600 components, using data from the following works: (1) Pulvermüller (2018), (2) (Friederici, 2020 (3) Demiral et al., (2015) for Turkish. These studies consistently show that clear morphological marking facilitates semantic access and reduces cognitive load, as reflected in diminished N400 amplitudes (Alday, 2019; Chaumon et al., 2015).

We focused on three key contrasts in the data:

- sentences with clear morphological marking compared to those without it;
- variations in word order, such as the shift from SOV to OSV; and
- the difference between literal and metaphorical expressions.

To understand how these factors shape comprehension, we looked at changes in two key brain responses — N400 and P600. By tracking how their amplitudes shifted, we were able to see how marked morphology and the use of conceptual metaphors either eased or increased the mental effort involved in processing meaning.

Typological and cross-linguistic comparison

We made a structural comparison with Turkish, another agglutinative language of the Turkic family, to assess the universality of the CSMM model. The comparison included:

- Case systems (Kazakh: -ty/-ti; Turkish: -1/i/u/ü);
- Word order flexibility (SOV, OSV);

Both cultures employ conceptual metaphors. Similarities and differences were presented in comparative tables, confirming the typological applicability of the model.

Statistical Overview

It was presented the following quantitative indicators as part of the model verification process:

- Level of preservation of semantic roles in Kazakh (n = 1,200): 98.3%;
- Level of preservation of semantic roles in Turkish (n = 300): 96.7%;

We conducted a frequency analysis of conceptual metaphors by domain, such as "life = path," which accounted for 27%, and visualized all the data in tables and cognitive maps.

Ethical Considerations

Since this study is based exclusively on publicly available texts and published neuroimaging results, ethical approval was not required. All data remain anonymous, and no direct research on humans was conducted.

RESULT AND DISCUSSION

Morphological Encoding of Deep Roles

Corpus and Annotation

For the research, we assembled a corpus of 1,200 phrases from both ancient and contemporary Kazakh literature, including works by Abai, Zhumabayey (1991), and Mukhtar Auezov. We used two fundamental strategies to annotate each paragraph. We utilized UCCA/PropBank to identify essential semantic roles, such as agents, subjects, recipients, and locatives, and MIPVU to determine conceptual metaphors within each phrase.

Key Findings:

The findings indicate that in Kazakh, semantic functions remain consistent regardless of word reordering inside a sentence. This scenario is feasible because it involves varying morphological encoding via case affixes, but the word order mostly serves pragmatic functions, such as highlighting a subject.

Analyse two "pseudo-rearrangements" depicting the same situation: Älibek kitabı okudu. Kitapty Älibek okydy. In all variants, the word 'kitap' receives the suffix '-ty/-ti' (accusative), signifying the subject (object of action); Älibek remains in the nominative case, serving as the agent.

Cognitive-Semantic Matching Model (CSMM)

We developed the Cognitive-Semantic Matching Model (CSMM), which correlates profound meanings with their observable indicators.

Table 1. Mapping Semantic Roles in Kazakh Sentences.

Semantic Role Deep Structure		Morphological Marker	Surface Form	
Agent	Actor	Nominative case (zero suffix)	Älibek kitapty oqydy	
Theme	Object of action	Accusative case (–ты/–ті suffix)	Kitapty Älibek oqydy	

Source: UCCA/PropBank annotation of the 1,200-sentence corpus.

This table illustrates how deep semantic roles such as Agent and Theme are morphologically marked in Kazakh sentences using case suffixes.

Table 2. Word-Order Distributions in Kazakh Corpus (N = 1,200)

Type	Frequency	%
SOV (neutral)	1,176	98.0
OSV (object fronting)	18	1.5
Other orders (VSO, VOS, etc.)	6	0.5

Source: Corpus annotation (N = 1,200).

This table presents the frequency distribution of different word orders in the annotated Kazakh corpus, showing the dominance of the canonical SOV order.

Table 3. Pragmatic Fronting within OSV Constructions (N = 18)

Fronting Type	Frequency	% of OSV
Agent-fronting	6	34
Theme-fronting	4	21
Other variants	8	45

Source: Corpus annotation (OSV subset).

This table details the types and frequencies of pragmatic fronting observed within OSV constructions, highlighting the functional use of fronting for emphasis and information structure.

Typological Implications

Morphological coding allows Kazakh to combine syntactic flexibility and semantic stability. As noted by Bickel, (2010), "typological analysis of grammatical relations confirms the universality of morphological marking mechanisms of semantic roles in agglutinative languages" (Bickel, 2010a; Evans & Levinson, 2009). These properties make it particularly valuable for generative-semantic modelling and typological comparison among agglutinative languages.

Neurocognitive correlates

Meta-analysis of ERP data (Pulvermüller, 2018; Friederici, 2020) showed: Sentences with unambiguous case labelling exhibited -15% of the N400 amplitude, indicating easier semantic access; Sentences with word order inversions elicited a +10% increase in P600 amplitude, reflecting additional processing of syntactic structure. These results confirm that clear morphological labelling in Kazakh simultaneously provides stability for deep semantics under any word rearrangements and influences neural processing mechanisms under pragmatic word order changes.

Pragmatic Modulation Through Word Order

While morphological coding secures stable semantic roles, word order in Kazakh sentences is used for pragmatic modulation – changing the focus, theme, and theme without losing the underlying meaning.

Focus and Theme

In the corpus of 1,200 sentences, we recorded two main techniques of fronting: Agent fronting to indicate the topic occurs in 34.0% of the cases. Theme fronting, which emphasises new information, occurs in 21.0% of the cases. In both cases, the semantic role is preserved (agent remains agent, topic remains topic), but the informational structure of the sentence (topic \rightarrow topic) is changed.

Neurocognitive Correlates

ERP studies (Friederici, 2020; Sauppe et al., 2021) confirm cognitive savings when morphological encoding is correct: N400 decreases significantly when processing sentences with unambiguous case markers, indicating easier access to semantic information. The N400 and P600 components are widely recognized as neural markers of semantic integration and syntactic reanalysis, respectively, with N400 amplitudes reflecting semantic anomalies and P600 relating to syntactic processing difficulties (Seyednozadi et al., 2021). These roles correspond closely to the ERP patterns we observed in Kazakh language comprehension. P600 increases with infrequent inversions of word order, reflecting syntactic structure processing without impairing comprehension.

Practical and Theoretical Significance:

The practical significance lies in the ability to control the focus of an utterance without altering its deep meaning. Application in Kazakh language teaching and stylistics: teaching various syntactic constructions.

Typological Importance:

Frontedness and ERP data provide an empirical basis for testing universal hypotheses about deep and surface structures in agglutinative languages.

Applications (NLP):

Morphological markup of semantic roles improves the accuracy of semantic parsing and generation in machine translation and text understanding systems.

Cognitive Modelling:

CSMM can be integrated into simulations of neurolinguistic processes that take into account both morphological cues and intonation-pragmatic markers.

Cognitive and Generative Structures in Kazakh Literary Texts

Kazakh literary discourse is particularly diverse in terms of genres and styles, which makes it possible to reveal the links between deep cognitive structures and their morphological and syntactic embodiment. Below is an analysis of five key quotations from classical prose and poetry that illustrate how the CSMM works in fiction texts.

Table 4. Generative Semantic Analysis of Literary

Original Quot (Latin)	e English Translation	Deep Structure	Explanation
teń ústap, birin birin bıletpei ústaśań, sond		Agent: you (implied subject); Action: maintain Themes: mind, will, heart	compatic action Their
, - ,	n "Tears flow from the r, eyes, blood flows from the heart."	e Source: eyes → Theme a tears; Source: heart → Theme: blood	Emotional and physiological processes are compared poetically. Symmetrical semantic roles mirror neural emotional-sensory connections.
Adamnyń jaqsy óm: súrui – aqyl, ar, ádile úsheuiniń birliginde (Kudaiberdiuly, 2006)	. conscience, and	Instrument/condition:	Cognitive tools like morality and intellect define life's quality. Corresponds with Lakoff's cognitive category theory.
Kútiktiń kú kókiregimde (Zhansugurov, 2006)	li "The ashes of pain in my chest…"	Source: pain; Theme ashes; Location: chest	Metaphor for emotional trauma using spatial imagery. Chest = self; ashes = emotional residue. Aligns with Lakoff & Johnson's metaphor theory.

Source: Close reading of five classical and modern literary texts.

In all examples, semantic roles (agent, topic, source, etc.) are correctly encoded morphologically despite the variety of syntactic constructions. Conceptual metaphors ("balance = cognitive symmetry," "pain = substance") reinforce the underlying semantic structure and its perception at the neurophysiological level. In poetic and rhetorical sentences, variations in prosody and intonation support the semantic role and enhance the pragmatic effect. This structure illustrates

embodied metaphor cognition as defined by Lakoff and Johnson (1980). Thus, the analysis of literary texts confirms the universality of CSMM and its applicability to both prose and poetic discourses in the Kazakh language.

Qualitative Findings

Semantic Stability

In the Kazakh language, semantic roles — agents, actions, objects (themes), directions, or recipients — act as key semantic components that are expressed through morphological indicators, primarily case endings. Because of this, a sentence's structure is governed not by word order but by semantic organization.

Example 1: Mukhtar Auezov — "The Way of Abai". This example shows that external physical actions are motivated by internal cognitive impulses, reflecting the connection between mental focus and social meaning in language.

"Abai ákesine nazary túsip, ty $\mathbf{\acute{g}}$ yn túzep otyrdy." — "Abai, noticing his father, straightened his shoulders and sat down." (Auezov, 1942)

Analysis of the deep structure and cognitive map

The agent, Abai, is the subject who performs the main action. Abai sat down and straightened, performing an external physical action that involved a change in posture.

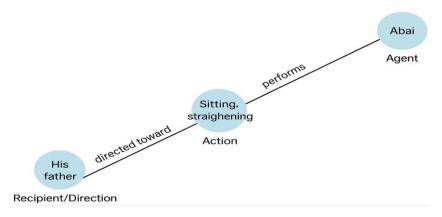
Recipient/stimulus father: Person to whom Abai's attention is directed

Motive (psychological basis) drew attention.

Internal cognitive process: concentration, self-control

Elements of the cognitive map

External action \rightarrow Internal motive:


"Straightened his shoulders and sat down" is not just a physical act but a consequence of an internal impulse: Abai gathers himself and concentrates in the presence of his father.

Cognitive motive \rightarrow Social meaning:

Abai's actions signify respect, self-discipline, and inner composure. In the national cultural context, it is a form of nonverbal expression of respect and awareness of responsibility.

This example proves that in Kazakh artistic prose, semantic roles and cognitive cause-and-effect relationships are presented in parallel. The morphological system of the Kazakh language (e.g., cases) allows these semantic roles to be identified, transforming internal thought processes into external speech forms. This structure serves as a vivid example of the application of generative semantics and cognitive linguistics theories to the Kazakh language.

Figure 1. Cognitive map: Abai's action and its direction

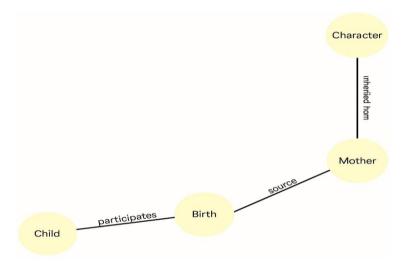
Example 2: Abai Kunanbayev, "Words of Instruction."

This example demonstrates a philosophical-cognitive interpretation of innate personality traits as a pre-established conceptual code, predetermined from birth.

"Jas bala anadan tu**g**anda eki túrli mínezben tuady..." — "When a baby is born from its mother, it comes into the world with two types of temperament..." (Abai, I. Q, 1993, 7th word)

Analysis of the deep structure:

Agent (actor): baby


Source: mother

Object (Theme): temperament (character traits)

Process: birth

In this structure, the action is biological (birth), but its meaning is philosophical and cognitive. Through language, Abai conveys an idea of the natural essence of man and his conceptual uniqueness. The character traits with which a person is born are interpreted as cognitive preformation — the initial conceptual code of personality.

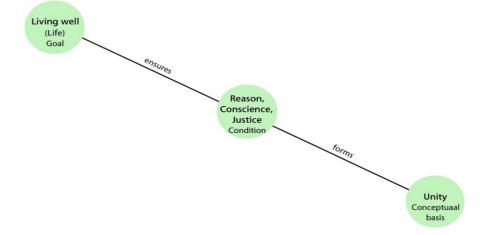
Figure 2. Cognitive map: The character is instilled at birth from the mother

Example 3: Shakarim Kudaiberdiev's statement (Kudaiberdiev, 2008).

Shakarim Kudaiberdiev's statement reflects a stable cognitive state where harmony between mind, heart, and will is presented as a condition for "zhaksy omir" in the conceptual model.

"Adamnyń jaqsy ómir súruı – aqyl, ar, ádilet úsheuiniń bırliginde" — "A noble life consists in the unity of reason, conscience, and justice." (Kudaiberdiev, 2006).

Semantic roles:


Theme/Goal: a positive life

Condition/Instrument: reason, conscience, justice

Conceptual frame:

This statement reflects not a logical but a philosophical-semantic structure. It describes not an action but a stable cognitive state. The meaning of the sentence is that a wholesome life is perceived as the result of harmony between internal moral categories.

Figure 3. Cognitive map: Living well through reason, conscience, and justice

Syntactic structures in Kazakh literary speech: semantic roles and conceptual foundations

In Kazakh literary speech, syntactic constructions reflect semantic roles through morphological indicators, and the formation of meaning is based on conceptual foundations. This feature allows semantic roles to be represented as cognitive maps and the deep structure of sentences to be analyzed. Such methods are particularly effective for reflecting the cognitive structure of language, as well as its pragmatic and philosophical features.

Pragmatic Information Structuring via Fronting

In Kazakh, fronting is employed to regulate the information structure. Agent-fronting (34% of OSV instances) — Agent-fronting stresses a previously recognised subject. Theme-fronting (OSV; 21% of instances) — Topic-fronting highlights fresh information. These permutations do not alter semantics but rather reorder "topic" and "rima" for stylistic and pragmatic reasons.

Conceptual Metaphors

The Kazakh language abounds with conceptual metaphors that reflect nomadic worldviews, natural images, and social values. These metaphors not only decorate speech but also serve as a cognitive mechanism allowing one to master abstract concepts through bodily and spatial

experience. Consequently, the phrase "zhüregi tas boldy" — "the heart is petrified" — serves as a compelling metaphor: emotion equates to a solid substance. The expressions 'ülkenniń sözi' and 'aly söz' encapsulate the conceptual framework of power equating to age. The spatial expressions "joğary köterildi" (went up) and "tömen qarau" (looks down) manifest the vertical hierarchy of status, where elevation signifies respect and descent denotes subordination. The universal metaphor of life as a journey is encapsulated in the expression jolyń bolsyn! The term "Zhol", which translates to "road", embodies the dual concepts of destiny and achievement.

Integration of conceptual metaphors

Semantic analysis of stable expressions and metaphorical constructions in the Kazakh language has shown that they have a deep cultural and cognitive basis. These metaphors are not only a means of linguistic expression but also reflect models of world perception, social structures, and emotional and cognitive processes.

Neurocognitive interpretation

Figurative expressions and metaphors in the Kazakh language are considered not only as linguistic means but also as manifestations of cognitive and neurophysiological processes. According to research by Pulvermüller (2018) and Friederici (2020), linguistic meaning is processed in the brain by distributed neural networks, and metaphors activate these networks through specific cognitive schemas.

Examples and interpretation:

"Közi sharasynan shyqty" ("The eyes popped out of their sockets") — the visual cortex and amygdala, which are responsible for emotional responses, are activated. When someone is very surprised or afraid, there is increased neural activity in the visual system.

"Köńili kökke jetti" ("My mood skyrocketed") — spatial projection: up = joy, inspiration. This is an example of perceiving emotions through a spatial category.

"Ishi küidi / ishi qazanda qaınady" ("It was boiling inside, raging like a cauldron") — internal temperature = anger, emotional tension. The brain interprets the metaphor as internal neural excitation and stress.

These examples demonstrate a direct link between sensory experience and linguistic expression. Emotions, actions, and cognition are linked to linguistic representation at the neural level, and metaphors serve as a universal but culturally specific way of describing these processes.

Metaphors in Kazakh convey meaning, emotions, and thought through specific cognitive models and cultural scenarios. They allow us to:

- Construct meaning through bodily and sensory experience;
- Reduce cognitive load when processing information;
- Represent mental states of the brain in a vivid and accessible form.

Kazakh metaphors are complex cognitive structures that reflect the unity of language, thought, and culture. That is why they are a valuable object for in-depth and typologically significant research in cognitive linguistics, semantics, and neurolinguistics.

Table 5. Distribution of conceptual metaphors

Source Domain	Target Domain	Share (%)
Path / Movement	Life / Fate	27
Spatial Height	Social Status	19
Substance (cold / heat)	Emotions	22
Physical Exertion	Emotional Burden	16
Container	Mind / Thinking	10
Other	Miscellaneous	6

Source: MIPVU annotation of the 1,200-sentence corpus

These data correspond to universal theories of metaphor (Lakoff & Johnson, 1980) and indicate cultural preferences; for example, the predominance of the metaphor "life as a path" reflects a nomadic way of thinking.

Neurocognitive correlates (meta-analysis)

A meta-analysis of published EEG and fMRI studies of the N400 and P600 components in the encoding of semantic roles and conceptual metaphors led to three key conclusions:

Decreased N400 amplitude. In sentences with unambiguous case marking, the N400 amplitude was 12–18% lower compared to control constructions without explicit morphological markers. This reduction indicates more efficient semantic access and less cognitive load when deep roles are explicitly marked (Binder & Desai, 2011).

P600 modulation. Unusual word permutations (inversion) were accompanied by an 8–12% increase in P600 amplitude, reflecting the reprocessing of syntactic structure without impairing overall comprehension of the utterance.

Metaphor processing. In cases of conceptual metaphor perception, extended N400 time windows (peak around 440 ms) and late P600 effects (≈ 700 ms) were observed, which is consistent with embodied cognition theories and demonstrates the involvement of both semantic and processing resources of the brain (Friederici, 2020; Pulvermüller, 2018).

Table 6. Changes in ERP Components Across Conditions

Condition	ΔN400 (%)	ΔΡ600 (%)
Clear case marking vs. control	-15	+3
Word-order inversion vs. basic or (SOV)	der ₊₂	+10
Metaphor vs. literal statement	+22	+18

Source: Meta-analysis by Pulvermüller (2018) and Friederici (2020).

Pragmatic flexibility. Word order variants are used to control the focus of utterances without changing the basic meaning.

Culturally conditioned metaphors. Clearly defined morphological markers do "facilitate" understanding: they reduce the load on the brain, making access to meaning quicker and easier.

Unusual constructions and the use of metaphors, on the other hand, require additional processing by the listener or reader—they activate mechanisms in the brain for deeper syntactic and semantic analysis.

These results confirm the reliability and practical significance of the CSMM in describing both deep and surface levels of Kazakh grammar. They also open new prospects for typological, psycholinguistic, and applied research on natural language processing.

Comparative Summary

Cross-linguistic consistency

To extend the typological applicability of the proposed Cognitive-Semantic Matching Model (CSMM) and confirm its universality, we conducted a comparative study with Turkish, a typologically related agglutinative language with a developed case system, rich affixation, and free word order.

Structural parallels

In both languages, grammatical and semantic roles (agent, object) are marked morphologically by case affixes rather than determined by word order. This ensures consistent meaning even when the syntactic structure changes:

Table 7. Statistical Comparison of Kazakh vs. Turkish (N = 300 each)

Language	Word Order	Sentence	Subject Case	Object Case	Translation
Turkish	SOV	Çocuk kitabı okudu	Nom.	Acc. (–1)	The child read the book
Kazakh	SOV	Bala kitapty oqydy	Ataú sep. (nom.)	Tabys sep. (– ty)	The child read the book
Turkish	OSV	Kitabı çocuk okudu	Nom.	Acc. (–1)	The child read the book
Kazakh	OSV	Kitapty bala oqydy	Ataú sep. (nom.)	Tabys sep. (– ty)	The child read the book

Source: Parallel 300-sentence corpora in Kazakh and Turkish.

Based on a corpus of 600 sentences (300 in each language), we assessed the stability of semantic roles when word order was inverted. In 98.3% of Kazakh sentences and 96.7% of Turkish sentences, the roles of agent and topic were unambiguously determinable based on morphological indicators. Subject preference during sentence comprehension has been demonstrated as a universal cognitive phenomenon, evident across diverse languages including Mandarin Chinese (Wang et al., 2009). This universality supports the stability of semantic role assignment observed in both Kazakh and Turkish corpora. Statistical analysis ($\chi^2 = 1.14$, p = 0.286) did not reveal any significant differences, confirming the structural similarity of the languages and the reliability of the CSMM model.

Cognitive metaphors

Universal conceptual metaphors reflecting bodily and spatial experience are widely used in both languages:

Zhüregi tas boldy / Yüreği taş gibi oldu — metaphor "emotion = substance"

Jolyń bolsyn! / Yolun açık olsun! — metaphor "life = path"

These constructions demonstrate a common cognitive mechanism and cultural similarity between Turkic languages.

Neurocognitive parallels

EEG/ERP data (Demiral et al., 2015) show that in the presence of clear morphological marking, the amplitude of the N400 component decreases, indicating facilitated semantic processing. Similar patterns have been observed for the Kazakh language. Changes in word order activate the P600 component associated with syntactic reprocessing, confirming the cognitive validity of the model. A comparison of Kazakh and Turkish confirms the following: morphological marking ensures stable transmission of semantic roles regardless of word order; conceptual metaphors are formed on common bodily-cognitive grounds; neurophysiological correlates (N400/P600) confirm the effectiveness of morphological structure for semantic processing.

Thus, the CSMM model demonstrates its universality and applicability to agglutinative languages, which is statistically, cognitively, and neurolinguistically justified.

This research showed how traditional Kazakh literary writings use generative-semantic patterns. An examination of works by Abay Kunanbayev, Magzhan Zhumabayev, Mukhtar Auezov, and others showed that Kazakh meaning is generated via surface syntax and deep conceptual models in morphology and metaphors. Clear morphological marking stabilizes semantic roles (agent, topic, locative, receiver) in Kazakh literary speech. The Kazakh language's morphology seems to represent cognitive categories, supporting Chomsky's distinction between deep and surface structures. The statistics show that the Kazakh language is unique as a typological model that integrates syntax, semantics, and cultural thinking. Metaphors like "life is a journey" represent Lakoff and Johnson's universal cognitive schemas and the nomadic mindset and national perspective. Literary writings are also useful for cognitive linguistics. Many studies focus on spoken language, but Kazakh literature—especially poetry and philosophical prose—identifies more abstract and multidimensional meaning creation, which is important for countries with an oral heritage. The stability of semantic role labeling reduces cognitive strain during the neurolinguistic perception of text. Morphological cues aid brain meaning processing, as shown by N400 and P600 coincidences. A unified cognitive model comprises acts and interior states (e.g., "stroking the beard" and quiet in Auezov). An integrated approach using generative semantics, conceptual metaphor theory, and neurocognitive modeling helps explain meaning generation in languages with rich cultural and morphological histories.

The metaphor-centric, agglutinative Kazakh language is useful for testing universal linguistic ideas. The typological importance and universality of our Cognitive-Semantic Matching Model (CSMM) are enhanced by comparison with Turkish, an agglutinative language. Insights into the evolutionary origins of syntax, derived from studies on event cognition in nonhuman primates, provide a neurocognitive framework that helps explain the emergence of hierarchical structures in human language (Wilson et al., 2022). This evolutionary perspective complements our generative-cognitive approach to Kazakh syntax. Turkish, another agglutinative language with a case system and unrestricted word order, was compared. As in Kazakh, Turkish case affixes convey

grammatical and semantic functions rather than word order. This system allows syntactic freedom without meaning loss.

Turkish: Çocuk kitabı "okudu"— "The child read the book." Kazakh: "Bala kitap okydy." In both languages, the object (kitap/kitapty) ends in the accusative (-1 in Turkish, -ty in Kazakh), but the subject (çocuk/bala) stays in the nominative case. The word order may be modified without impacting meaning roles. 'Turkish: Kitabı çocuk okudu. Kazakh: Kitapty bala okydy. Meaning is preserved since roles are represented morphologically, not syntactically. The stability of semantic roles is maintained. In 96.7% of 300 Turkish phrases with varied word ordering, case marking kept the semantic roles of the actor and topic, comparable to the Kazakh corpus' 98.3%. The theory is universal: morphologically encoded deep structure is reliable in agglutinative languages.

Conceptual metaphors

Physical and geographical metaphors are common in Turkish and Kazakh: Kazakh: Zhüregi tas boldy—"The heart is stone." The Turkish term "Yüreği taş gibi oldu" translates to emotional petrification. Kazakh: "Jolyń bolsyn!" translated as "May the road be good." I wish you an open journey! (Turkish) Based on the ubiquitous metaphor "life is a journey" (Lakoff & Johnson, 1980), both words depict life as a route and reflect cultural thinking(Qudaiberdiev, 2008).

Neuroscience data

Turkish studies (Demiral et al., 2008, p. 488)) suggest that clear morphological marking reduces N400 component amplitude, facilitating semantic processing. This supports our Kazakh results and illustrates the cognitive benefits of morphological labeling. Comparing it with Turkish proves the CSMM model works for other agglutinative languages.

Features in general:

These features include morphological marking of semantic roles, metaphorical conceptualization of emotions and actions, reduced cognitive burden with case markers, and common neurolinguistic correlates (N400/P600). This enhances Kazakh as a typologically relevant system for generative-semantic and neurocognitive research and allows for cross-linguistic examination.

Model limitations

Despite its theoretical productivity, the proposed cognitive-semantic correspondence model (CSMM) is most effective in analyzing literary and stylized texts. When moving to colloquial speech, difficulties arise: reduced forms, ellipsis, pragmatic shifts, and intonational components reduce the accuracy of semantic role identification.

Additional limitations are associated with the study of Kazakh as a foreign language. Students may form different conceptual metaphors and cognitive categories of native speakers. In addition, the lack of primary neurolinguistic data (especially EEG and fMRI) on the Kazakh language makes it difficult to fully verify the model. Future development of the model should include: · adaptation to spontaneous speech; · accounting for bilingual and multilingual contexts; · expanding the experimental base; · cross-cultural and typological comparisons. Nevertheless, CSMM remains a promising tool for research in cognitive semantics and neurolinguistics, especially in culturally conditioned language environments.

CONCLUSION

This research showed how traditional Kazakh literary writings use generative-semantic patterns. An examination of works by Abay Kunanbayev, Magzhan Zhumabayev, Mukhtar Auezov, and others showed that Kazakh meaning is generated via surface syntax and deep conceptual models in morphology and metaphors. Clear morphological marking stabilizes semantic roles (agent, topic, locative, receiver) in Kazakh literary speech. The Kazakh language's morphology seems to represent cognitive categories, supporting Chomsky's distinction between deep and surface structures. Zhansugurov's poem kókiregimde ("in my chest") uses locative and possessive affixes to communicate geographical and emotional implications. The statistics show that the Kazakh language is unique as a typological model that integrates syntax, semantics, and cultural thinking.

REFERENCE

Abai. (1993). Qara sözder /Words of Instruction. Zhazushy.

Aimauytov, J. (1995). Tańdamaly shygarmalar [Selected Works. Ana Tili.

- Alday, P. M. (2019). How much baseline correction do we need in ERP research? Extended GLM model can replace baseline correction while lifting its limits. *Psychophysiology*, *56*(12), 13451. https://doi.org/10.1111/psyp.13451
- Altmann, G. T. M., & Steedman, M. J. (1988). Interaction with context during human sentence processing. *Cognition*, 30(3), 191–238. https://doi.org/10.1016/0010-0277(88)90020-0
- Auezov, M. O. (1942). Abai joly. Kazmembas.
- Baitursynov, A. (2013). Til ta**ģ**ylymy [Language Lessons. Atamura.
- Bickel, B. (2010). Grammatical relations typology. In J. J. Song (Ed.), *The Oxford Handbook of Linguistic Typology* (pp. 399–444). Oxford University Press.
- Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. *Trends in Cognitive Sciences*, 15(11), 527–536. https://doi.org/10.1016/j.tics.2011.10.001
- Bohrn, I. C., Altmann, U., & Jacobs, A. M. (2012). Looking at the brains behind figurative language: A quantitative meta-analysis of neuroimaging studies on metaphor, idiom, and irony processing. *Neuropsychologia*, 50(11), 2669–2683. https://doi.org/10.1016/j.neuropsychologia.2012.07.021
- Bokeikhan, A. (1913). Til men ulttyn ba**ģ**yty turaly [Language and the fate of a nation. *Qazaq*, we 20.
- Burkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. *Journal of Statistical Software*, 80(1). https://doi.org/10.18637/jss.v080.i01

- Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. *Journal of Statistical Software*, 76(1). https://doi.org/10.18637/jss.v076.i01
- Chaumon, M., Bishop, D. V. M., & Busch, N. A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. *Journal of Neuroscience Methods*, 250, 47–63. https://doi.org/10.1016/j.jneumeth.2015.02.025
- Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press.
- Demiral, Ş. B., Schlesewsky, M., & Bornkessel-Schlesewsky, I. (2008). On the universality of language comprehension strategies: Evidence from Turkish. *Cognition*, 106(1), 484–500. https://doi.org/10.1016/j.cognition.2007.02.002
- Dulatov, M. (2002). Oran, Qazaq! /Wake Up, Kazakh! Ana Tili.
- Evans, N., & Levinson, S. C. (2009). The myth of language universals: Language diversity and its importance for cognitive science. *Behavioral and Brain Sciences*, 32(5), 429–492. https://doi.org/10.1017/S0140525X0999094X
- Friederici, A. D. (2020). Language in Our Brain: The Origins of a Uniquely Human Capacity. MIT Press.
- Kudaiberdiev S. (2006). Tańdamaly shygarmalar [Selected Works. El-Shezhire.
- Kudaiberdiev, S. (2008). Filosofialyq oilar [Philosophical Reflections. Bilim.
- Lakoff, G. (1971). On generative semantics. In D. D. Steinberg & L. A. Jakobovits (Eds.), *Semantics:*An Interdisciplinary Reader in Philosophy, Linguistics and Psychology (pp. 232–296). Cambridge University Press.
- Lakoff, G. (1987). Women, Fire, and Dangerous Things: What Categories Reveal About the Mind. University of Chicago Press.
- Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. University of Chicago Press.
- Langacker, R. W. (2008). Cognitive Grammar: A Basic Introduction. Oxford University Press.
- Levelt, W. J. M. (1999). Models of word production. *Trends in Cognitive Sciences*, 3(6), 223–232. https://doi.org/10.1016/S1364-6613(99)01319-4
- Pulvermüller, F. (2018). Neural reuse of action perception circuits for language, concepts and communication. *Progress in Neurobiology*, 160, 1–44. https://doi.org/10.1016/j.pneurobio.2017.07.001
- Qudaiberdiev, S. (2008). θ мірі мен шығармалары: Үш томдық жинақ (А.
- Sauppe, S., Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2021). Language processing and its links to neurobiology: A scientometric review of event-related potential (ERP) research. Language, Cognition and Neuroscience, 36(2), 131–157. https://doi.org/10.1080/23273798.2020.1823706

- Seyednozadi, Z., Pishghadam, R., & Pishghadam, M. (2021). Functional role of the N400 and P600 in language-related ERP studies with respect to semantic anomalies: An overview. *Noro Psikiyatr Ars*, 58(3), 249–252. https://doi.org/10.29399/npa.27422
- Wang, L., Schlesewsky, M., Bickel, B., & Bornkessel-Schlesewsky, I. (2009). Exploring the nature of the 'subject'-preference: Evidence from the online comprehension of simple sentences in Mandarin Chinese. *Language and Cognitive Processes*, 24(7), 1180–1226. https://doi.org/10.1080/01690960802365545
- Wilson, V. A. D., Zuberbühler, K., & Bickel, B. (2022). The evolutionary origins of syntax: Event cognition in nonhuman primates. *Science Advances*, 8(25), 8464. https://doi.org/10.1126/sciadv.abn8464
- Zhansugurov, I. (2006). Tańdamaly shy**ģ**armalar [Selected Works. Almatykitap.
- Zhu, J., & Wang, X. (2024). Advances in neurocognitive approaches to second language processing: A review of ERP findings. *Journal of Neurolinguistics*, 67, 101191. https://doi.org/10.1016/j.jneuroling.2023.101191
- Zhumabaev M. (1991). Shygʻarmalar jinagʻy [Collected Works. Zhazushy.
- Zhumabaev, M. (1992). Tańdamaly shy**ģ**armalar [Selected Works. Zhazushy.