Eduscape: Journal of Education Insight

E-ISSN: 3026-5231

Volume. 3, Issue 1, January 2025

Page No: 13-27

Bridging Divides in Digital Pedagogy: A Narrative Review of Emerging Tools and Inclusive Practices

Masripah¹, Ani Siti Anisah², Asep Tutun Usman³ Universitas Garut, Indonesia¹²³

Correspondent: masripah@uniga.ac.id 1

Received : Desember 09, 2024 Accepted : Desember 25, 2024 Published : January 26, 2025

Citation: Masripah., Anisah, A, S., & Usman, A, T. (2025). Bridging Divides in Digital Pedagogy: A Narrative Review of Emerging Tools and Inclusive Practices. Eduscape: Journal of Education Insight, 3(1), 13-27. https://doi.org/10.61978/eduscape.v3i1

ABSTRACT: This study presents a narrative review of digital pedagogy and technology-enhanced learning, focusing on how emerging tools and pedagogical strategies influence higher education. The review analyzes both opportunities and challenges of integrating digital technologies into teaching and learning. A systematic methodology was applied, drawing on peer-reviewed literature indexed in Scopus, Web of Science, and Google Scholar, with keywords such as digital pedagogy, technology-enhanced learning, artificial intelligence in education, AR/VR in education, and digital divide. The inclusion criteria covered empirical studies, reviews, and case studies published between 2015 and 2025. The results highlight that artificial intelligence supports personalization and predictive learning outcomes, while augmented and virtual reality enhance student motivation and comprehension through immersive experiences. Teacher digital competence emerged as a decisive factor for successful adoption, yet disparities remain between developed and developing contexts. Inclusive and human-centered pedagogy plays a crucial role in ensuring equitable access, particularly for learners with diverse needs. Despite these benefits, systemic barriers such as infrastructural deficiencies, insufficient professional training, and ethical concerns about data privacy continue to limit implementation. To address these issues, the discussion emphasizes the importance of supportive policy frameworks, collaborative partnerships, and targeted investments. Future research should explore longitudinal and comparative perspectives to understand the long-term impact of digital pedagogy across diverse contexts. Overall, the findings stress the urgency of developing inclusive and sustainable strategies to ensure technology reduces, rather than deepens, educational inequities.

Keywords: Digital Pedagogy, Technology-Enhanced Learning, Artificial Intelligence In Education, Augmented Reality In Learning, Virtual Reality In Education, Digital Divide, Inclusive Pedagogy.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

The integration of digital pedagogy into higher education is reshaping teaching and learning practices worldwide. The accelerated adoption of digital tools, catalyzed by the COVID-19

Masripah, Anisah, Usman

pandemic, has significantly influenced how educational institutions deliver content, interact with students, and assess learning outcomes. This shift has been accompanied by a surge of scholarly interest in exploring both the opportunities and the challenges associated with technology-enhanced learning (TEL). As noted by Husseiny and Abdallah (2023) and O'Brien and Forde (2023), the current trajectory of digital pedagogy emphasizes the adaptation of instructional strategies to align with increasingly sophisticated learner needs. Innovations such as flipped classrooms and blended learning models are not only becoming more prevalent but are also shaping a new educational norm in diverse institutional contexts. These developments highlight the need for faculty members to acquire sufficient skills for integrating digital tools effectively. The quality of learning largely depends on the pedagogical expertise applied in using these technologies.

The digitalization of education has also been supported by substantial evidence pointing to its capacity to enhance learning engagement and outcomes. For instance, UNESCO reported that over 1.5 billion learners were affected by school closures during the COVID-19 pandemic, necessitating a rapid shift to remote and online education. Subsequent studies have indicated that e-learning platforms and collaborative digital tools significantly bolster student interaction and engagement (Santos et al., 2023). In parallel, Badiozaman et al. (2020) documented that more than 80% of educators perceived digital technologies as positively influencing teaching quality. These findings reflect a global consensus that digital pedagogy, when strategically implemented, enhances not only the accessibility of education but also the depth of student participation and learning. O'Brien and Forde (2023) further highlighted the necessity of continuous professional development for educators, stressing that effective digital pedagogy requires both technical competence and pedagogical adaptation.

Statistical and empirical evidence reinforces the relevance of digital pedagogy in advancing student achievement. Ángel et al. (2022) demonstrated that learners engaged in digitally mediated education displayed a stronger grasp of academic content compared to those taught through traditional methods. This trend aligns with the findings of Carrim and Bekker (2022) and Weisberg and Dawson (2023), who underscored that digital and inclusive pedagogies provide equitable access to learning resources, mitigating disparities that often hinder students from marginalized or resource-limited backgrounds. Inclusive digital pedagogy, therefore, is increasingly recognized as both a pedagogical imperative and a social justice strategy aimed at bridging educational gaps. Such evidence strengthens the argument for expanding the integration of TEL approaches within higher education curricula globally.

However, the path toward fully realizing the potential of digital pedagogy remains fraught with challenges. Restoule and Snow (2023) and Noguera et al. (2024) identified digital divides and limited infrastructure as persistent barriers to equitable access. Insufficient internet bandwidth in many regions, coupled with a lack of reliable hardware and software, impedes the seamless implementation of digital learning initiatives. Moreover, disparities in student access to technology exacerbate inequities in learning experiences and outcomes, as observed by Weisberg and Dawson (2023) and Badiozaman et al. (2020). Faculty resistance to adopting new technologies further complicates this landscape, with O'Brien and Forde (2023) reporting that many educators feel underprepared or uneasy in utilizing unfamiliar tools. These systemic challenges highlight the

Masripah, Anisah, Usman

pressing need for policy interventions and institutional support mechanisms that prioritize both infrastructure development and educator training.

Another set of challenges arises from the pedagogical integration of advanced technologies such as augmented reality (AR), virtual reality (VR), and artificial intelligence (AI). While these tools hold immense potential for enhancing immersive and personalized learning experiences, their application in higher education is still underexplored. Hajirasouli and Banihashemi (2022) and Muzata et al. (2024) observed that despite growing enthusiasm for AR and VR, the pedagogical frameworks required to effectively embed these technologies into curricula remain underdeveloped. Similarly, the use of AI for personalized learning presents unresolved issues related to data privacy and ethical considerations (Luo & Zhu, 2025; Bulathwela et al., 2024). Addressing these gaps demands a concerted effort to design robust pedagogical models and ethical frameworks that guide the responsible use of emerging technologies in education.

A recurring theme in the literature is the lack of comprehensive evaluations of existing digital pedagogical approaches. Many digital tools and instructional methods have not been systematically assessed in authentic learning environments, leading to fragmented implementation and suboptimal educational outcomes (Hajirasouli & Banihashemi, 2022). Henriksen et al. (2024) and Butler-Henderson and Crawford (2020) also highlighted the scarcity of longitudinal studies examining the sustained impact of digital pedagogy across diverse learner populations and institutional contexts. This paucity of systematic inquiry underscores a critical research gap, necessitating further exploration to determine the long-term effectiveness and inclusivity of digital pedagogy within higher education systems.

The purpose of this narrative review is to provide a comprehensive examination of digital pedagogy and the future of technology-enhanced learning. Specifically, it aims to analyze how the integration of innovative digital tools and pedagogical strategies contributes to educational effectiveness, inclusivity, and adaptability. By synthesizing empirical evidence and theoretical perspectives, the review seeks to capture the transformative shifts occurring in teaching practices as a result of digitalization, while also highlighting unresolved challenges that warrant further scholarly and policy attention. The review builds on prior studies (Weisberg & Dawson, 2023; Daniela, 2021) and endeavors to present a holistic understanding of the dynamic interplay between pedagogy, technology, and institutional frameworks.

The scope of this review extends across varied geographical and socio-economic contexts, with particular attention to regions such as Southeast Asia and other developing areas where unique challenges shape the implementation of digital pedagogy. Jamil et al. (2023), for example, examined policy frameworks in Malaysia, emphasizing the necessity of aligning institutional and governmental policies with rapid technological advancements in education. Similarly, Rudolph et al. (2022) investigated the experience of educators and learners in Singapore during the COVID-19 pandemic, noting disparities in digital access and the need for enhanced faculty support. Mays (2023) also analyzed the distinct dynamics of distance and digital learning in developing nations, revealing how local contexts significantly mediate the adoption of educational technologies. By incorporating these perspectives, the review situates its analysis within both global and local

Masripah, Anisah, Usman

frameworks, acknowledging that the success of digital pedagogy is deeply influenced by contextual realities such as policy environments, infrastructure readiness, and cultural attitudes toward technology.

In summary, the introduction establishes the rationale for a narrative review of digital pedagogy and TEL, grounding the study in both global trends and localized challenges. It highlights the dual promise and complexity of digital transformation in education, justifying the need for a structured synthesis of current knowledge. The review ultimately seeks to inform educators, policymakers, and researchers about the pathways through which digital pedagogy can evolve into a more effective, inclusive, and ethically grounded practice, ensuring its relevance in addressing the educational demands of the twenty-first century.

METHOD

The methodology followed a systematic process to synthesize literature on digital pedagogy and technology-enhanced learning. Searches were conducted in Scopus, Web of Science, and Google Scholar, using keywords such as digital pedagogy, technology-enhanced learning, AI in education, AR/VR in education, and digital divide. Studies were included if they were published between 2015–2025, peer-reviewed, and directly related to higher education pedagogy.

The first stage of the methodology involved identifying and selecting the most relevant databases for conducting the literature search. Three primary sources were used: Scopus, Web of Science, and Google Scholar. Scopus was chosen for its comprehensive coverage of peer-reviewed academic publications across disciplines, including a strong repository of educational technology research. Its citation-tracking functionality and metrics such as the h-index and impact factor were particularly useful for assessing the scholarly influence of included works (Weisberg & Dawson, 2023). Web of Science was selected due to its rigorous indexing of high-impact journals and its analytic tools that enable researchers to identify influential studies and citation networks within the field of pedagogy and digital education (Hervás-Gómez et al., 2023). Google Scholar complemented these databases by offering a broader range of literature, including reports, theses, conference proceedings, and books. While less structured and selective than Scopus and Web of Science, Google Scholar provided access to diverse perspectives and region-specific studies, thereby enhancing the inclusivity of the review (Jamil et al., 2023).

The second stage of the methodology involved defining and operationalizing a set of keywords to guide the search strategy. The primary keywords selected reflected both general and specific aspects of digital pedagogy. The term "digital pedagogy" was employed to capture studies focusing on teaching strategies that integrate digital technologies in higher education (O'Brien & Forde, 2023). "Technology-enhanced learning" was included to identify research examining the application of technologies to augment the teaching and learning process, ensuring coverage of diverse modalities such as blended and flipped learning (Xiao & Evans, 2022). Given the centrality of emerging technologies, "AI in education" was used to locate studies that investigated the role

Masripah, Anisah, Usman

of artificial intelligence in personalizing learning experiences and reshaping educational practices (Bharucha, 2018). Similarly, "AR/VR in education" was included to identify literature exploring immersive learning environments created by augmented and virtual reality applications (Wimpenny et al., 2018). Finally, "digital divide in learning" was adopted to capture research addressing disparities in access to and utilization of digital tools among learners from different socioeconomic and geographic backgrounds (Sugiyanto et al., 2024). The strategic combination of these keywords through Boolean operators (AND, OR) allowed for the refinement of search results, enabling both breadth and precision in capturing relevant literature.

The inclusion and exclusion criteria were carefully established to ensure that only high-quality and pertinent studies were considered. The inclusion criteria required that studies be published between 2015 and 2025 to capture the most recent and relevant advancements in digital pedagogy. Only peer-reviewed journal articles, books, and book chapters were included to maintain academic rigor, although selected conference proceedings and policy reports were considered when they offered substantial empirical or theoretical contributions. Studies were included if they explicitly addressed digital pedagogy, technology-enhanced learning, or the integration of specific tools such as AI, AR, or VR in educational contexts. The focus was on higher education, although literature from K-12 contexts was also included when it provided transferable insights into broader pedagogical strategies.

The exclusion criteria eliminated studies not directly related to education or pedagogy, such as those focusing exclusively on technical innovations without pedagogical implications. Articles published in languages other than English were excluded to maintain consistency in the review process. In addition, papers that lacked empirical data or clear theoretical frameworks, such as opinion pieces or non-scholarly commentaries, were excluded. Duplicate records identified across databases were also removed to streamline the selection process.

The types of research included in this review encompassed a wide range of methodologies to capture the multidimensional nature of digital pedagogy. Empirical studies such as randomized controlled trials, quasi-experimental designs, cohort studies, and case studies were prioritized for their ability to provide robust evidence of pedagogical impact. Qualitative studies that employed interviews, focus groups, or ethnographic methods were also included for their capacity to yield insights into educators' and students' lived experiences with digital pedagogy. Furthermore, systematic reviews, scoping reviews, and meta-analyses were considered valuable for synthesizing existing evidence and identifying research gaps. Together, these diverse methodologies ensured that the review provided a balanced representation of both quantitative outcomes and qualitative perspectives.

The process of literature selection proceeded through multiple stages. Following the initial search, all retrieved articles were imported into a reference management system, where duplicates were automatically detected and removed. Titles and abstracts were then screened for relevance according to the inclusion and exclusion criteria. Studies that did not explicitly mention digital pedagogy or technology-enhanced learning in their aims, methods, or findings were excluded at this stage. Full texts of the remaining articles were subsequently reviewed in detail to confirm

Masripah, Anisah, Usman

eligibility. This stage focused on assessing whether the studies provided substantive contributions to understanding the integration of technology in pedagogical contexts.

The evaluation of articles was conducted through a structured framework emphasizing both methodological quality and relevance. For empirical studies, criteria such as sample size, study design, validity of instruments, and clarity of findings were assessed. Qualitative studies were evaluated based on the rigor of data collection and analysis, as well as the credibility and transferability of insights. Review articles were appraised for their comprehensiveness, transparency in reporting, and systematic approach to synthesizing literature. Throughout the evaluation process, studies were also categorized according to the thematic areas they addressed, such as AI in education, immersive technologies, teacher competence, inclusivity, or the digital divide. This categorization facilitated the identification of overarching themes and patterns across diverse bodies of literature.

By employing this methodology, the review sought to ensure both comprehensiveness and depth. The combination of multiple databases, carefully selected keywords, and rigorous screening and evaluation procedures enabled the synthesis of a wide range of perspectives while maintaining high academic standards. The inclusion of diverse research designs further enriched the review by capturing the complexity of digital pedagogy from multiple angles. Ultimately, the methodological approach adopted in this study reflects a commitment to rigor, transparency, and inclusivity, providing a solid foundation for the subsequent analysis of findings.

RESULT AND DISCUSSION

The findings of this narrative review highlight the multifaceted ways in which digital pedagogy and technology-enhanced learning are shaping contemporary education. Organized around four major themes that emerged from the literature—Artificial Intelligence in Education, Augmented and Virtual Reality, Teacher Digital Competence, and Inclusive and Human-Centered Pedagogy—this section synthesizes empirical evidence, theoretical perspectives, and comparative insights across geographical contexts. Each theme presents both opportunities and challenges, demonstrating how technology is simultaneously a driver of pedagogical innovation and a source of systemic inequities.

Artificial Intelligence (AI) in Education has increasingly been recognized as a transformative tool for personalizing learning experiences. AI applications analyze student data in real time, generating recommendations for instructional strategies, learning resources, and assessment methods tailored to individual learners. Luo and Zhu (2025) documented how adaptive AI-driven platforms enhance teachers' ability to customize lesson plans according to each student's unique trajectory. Empirical evidence further supports these claims. Chun et al. (2025) demonstrated that AI-based recommendation models not only accurately predicted student performance outcomes but also increased learner engagement in digital classrooms. The impact of AI is particularly evident in institutions where continuous data collection and analytics allow for the design of responsive curricula that evolve with learners' needs. However, the integration of AI in education varies

Masripah, Anisah, Usman

considerably across contexts. Ren and Wu (2025) reported that in advanced economies such as the United States and Western Europe, robust infrastructure and comprehensive teacher training programs enable widespread adoption of AI. By contrast, developing countries often face infrastructural limitations, insufficient digital literacy among educators, and restricted access to technological resources, all of which hinder equitable adoption (Gupta & Mahajan, 2023; Luo & Zhu, 2025). These disparities have resulted in uneven distribution of AI's benefits, where students in resource-rich settings gain a competitive advantage, while those in resource-limited environments remain excluded from AI-enabled pedagogical innovations.

Augmented Reality (AR) and Virtual Reality (VR) technologies have likewise shown substantial promise in enhancing student motivation, engagement, and comprehension. Systematic reviews have consistently demonstrated that VR creates immersive learning environments that improve retention and conceptual understanding compared to traditional instructional methods (Muzata et al., 2024; Bathla et al., 2024). For example, learners exposed to VR-based simulations scored significantly higher on comprehension tests than their peers who received only lecture-based instruction. AR has similarly been deployed to create interactive and visually engaging experiences that promote spatial reasoning and problem-solving skills. Yet, the adoption of AR and VR in education reveals a marked global divide. Hajirasouli and Banihashemi (2022) observed that universities in the United States and Germany have integrated AR/VR into engineering and medical curricula at scale, supported by substantial financial investment and cross-disciplinary research initiatives. In contrast, many developing nations remain at early stages of experimentation with AR and VR due to financial constraints, limited availability of devices, and curricular inflexibility. Gupta and Mahajan (2023) emphasized that in such settings, the lack of training opportunities for educators and insufficient institutional support further restrict the pedagogical integration of these tools. Velu et al. (2025) added that even when devices are available, the absence of clear pedagogical frameworks hinders educators from leveraging AR/VR technologies effectively. This uneven adoption underscores how technological innovation in education is deeply dependent on the socio-economic context in which it unfolds.

Teacher Digital Competence emerged as another critical factor influencing the successful integration of educational technologies. The literature overwhelmingly affirms that teachers' digital skills directly affect the quality of technology-enhanced teaching (Weisberg & Dawson, 2023). Teachers with high levels of digital competence are better positioned to adopt innovative instructional strategies, adapt digital resources, and create interactive learning environments (Jamil et al., 2023). However, O'Brien and Forde (2023) noted that without continuous professional development and strong institutional support, teachers often struggle to keep pace with technological advances. Comparative studies reveal stark differences between developed and developing regions. In North America and Western Europe, governments and universities have established structured, ongoing training programs to enhance teachers' digital skills (Angel et al., 2022). Conversely, Kalinina et al. (2021) found that in developing countries, barriers such as inadequate infrastructure, limited training resources, and persistent digital divides hamper efforts to strengthen teacher competence. Deák and Kumar (2024) reported that in these contexts, governmental policies play a decisive role in shaping outcomes, with proactive investments in digital teacher training correlating with higher levels of integration. In Indonesia, Brito (2024) observed that teacher training programs are infrequent and poorly standardized, producing uneven

Masripah, Anisah, Usman

digital skill levels among educators. These findings suggest that digital competence is both a personal skill set and a systemic issue, shaped by institutional and policy frameworks that determine whether teachers can thrive in digitally enhanced environments.

Inclusive and Human-Centered Pedagogy has been widely discussed in the literature as a necessary complement to technological innovation. The use of digital tools has been shown to facilitate inclusive practices by accommodating students with diverse learning needs, including those with disabilities. Singh and Ishrat (2025) highlighted how assistive technologies such as screen readers and adaptive software enhance accessibility for students with visual or auditory impairments. Boulton (2020) argued that digital pedagogy allows for adaptive learning pathways that can be tailored to students' abilities and preferences, thereby fostering equity in educational outcomes. AR and VR applications have also been deployed to create more inclusive learning experiences, enabling students to engage with complex subject matter in interactive and visually compelling ways (Trinh et al., 2024). Global case studies illustrate how inclusive, human-centered approaches to digital pedagogy can be realized in practice. In Finland, Youhasan et al. (2022) described how teachers involve students in curriculum development, ensuring that digital tools are employed in ways that prioritize learners' perspectives and needs. In Canada, Triyanto et al. (2024) documented the success of digital collaborative learning platforms in fostering inclusivity, as these systems allow students from diverse backgrounds to work together regardless of physical or socio-economic differences. Yet, in developing contexts, significant obstacles remain. Santos et al. (2023) noted that while inclusive pedagogical ideals are often emphasized, their realization is limited by infrastructural challenges and socio-economic inequalities. These findings underscore that inclusivity in digital pedagogy requires more than access to devices; it demands pedagogical frameworks and cultural commitments that prioritize human-centered values.

Taken together, the results of this review demonstrate that digital pedagogy is both a global trend and a locally mediated practice. While AI, AR/VR, and inclusive digital frameworks present unprecedented opportunities for personalized, immersive, and equitable education, their successful implementation hinges on the availability of infrastructure, teacher training, and supportive policies. The comparison between developed and developing countries reveals persistent disparities that must be addressed if digital pedagogy is to fulfill its transformative potential. The evidence suggests that without targeted investments in infrastructure, training, and inclusive frameworks, technological innovations may exacerbate rather than mitigate educational inequities. By contrast, when aligned with robust pedagogical principles and contextual realities, digital tools can become powerful enablers of effective, inclusive, and future-oriented education.

The findings of this narrative review underscore the transformative potential of digital pedagogy while simultaneously highlighting systemic challenges that limit its equitable implementation across diverse contexts. When situated within broader theoretical frameworks, such as connectivism and Universal Design for Learning (UDL), the role of technology in education becomes clearer. Connectivism, as emphasized by Weisberg and Dawson (2023), stresses the importance of networks and connections in learning processes. The integration of technologies such as artificial intelligence (AI), augmented reality (AR), and virtual reality (VR) has been shown to amplify these connections, fostering environments where learners and educators can interact in more collaborative and participatory ways. Similarly, UDL advocates for educational environments designed to meet diverse learner needs, and technology has proven indispensable in

Masripah, Anisah, Usman

actualizing these principles. Msimango (2025) observed that digital tools, from adaptive learning platforms to assistive technologies, enable educators to create inclusive spaces that respond to the variability of learners, particularly those with disabilities or unique educational needs.

Despite the theoretical alignment between digital pedagogy and contemporary learning models, the review reveals persistent systemic disparities that constrain effective implementation. Policies supporting the adoption of educational technologies often lack the necessary investment in infrastructure and professional training. Ng et al. (2022) highlighted that while governments may issue mandates for digital learning, insufficient funding for infrastructure and inadequate professional development for educators significantly undermine these initiatives. In developed countries, better infrastructure, reliable connectivity, and comprehensive teacher training programs create conditions conducive to successful integration (Ren & Wu, 2025). In contrast, Mahmud et al. (2021) found that in developing contexts, limited internet access, scarcity of devices, and lack of institutional support remain significant obstacles, resulting in unequal educational opportunities and reinforcing pre-existing social inequalities.

The global digital divide continues to be a critical theme in discussions on educational technology. While AI has demonstrated remarkable success in enhancing personalization and predicting student outcomes (Chun et al., 2025; Luo & Zhu, 2025), its benefits are disproportionately accessible to students in resource-rich contexts. This inequity reflects broader socio-economic divides where learners in advanced economies enjoy advanced tools and responsive learning platforms, while their peers in developing countries are excluded due to infrastructural deficiencies. Such disparities underscore the systemic nature of the challenge, as they are not merely technological but rooted in policy, governance, and socio-economic inequality. Weisberg and Dawson (2023) and Gupta and Mahajan (2023) further observed that these divides manifest not only in access to technologies but also in the competencies of teachers, institutional readiness, and cultural attitudes toward digital learning.

Beyond infrastructural and policy barriers, ethical concerns also emerge as critical limitations of current digital pedagogy. Eyal and Gil (2020) warned that unchecked technological adoption risks exacerbating educational inequalities by creating stratified systems where access to cutting-edge digital tools becomes a privilege of the wealthy. The use of AI raises further concerns about data privacy, algorithmic bias, and the ethical implications of surveillance in educational settings (Bulathwela et al., 2024; Luo & Zhu, 2025). These ethical dilemmas underscore the necessity of developing robust governance frameworks that prioritize fairness, accountability, and transparency in digital pedagogy. Such frameworks must balance the benefits of personalization and automation with safeguards that protect learners' rights and prevent technology from deepening existing inequalities.

Solutions proposed in the literature point toward multifaceted interventions that address systemic barriers at multiple levels. For instance, Xiao and Evans (2022) suggested that addressing the digital divide requires not only expanding access to devices and connectivity but also providing sustained professional development for teachers. Training programs should emphasize both technical competencies and pedagogical integration, ensuring that teachers can employ technologies in ways that enhance, rather than replace, pedagogical expertise. Jamil et al. (2023) further emphasized that institutional support plays a decisive role in shaping outcomes, particularly in developing contexts

Masripah, Anisah, Usman

where external resources are limited. Without consistent training opportunities and support mechanisms, teachers may resist or underutilize digital innovations, thereby limiting their potential impact.

Collaborative models between educational institutions and the private sector also emerged as promising pathways for addressing barriers to technology adoption. Sitaridis and Kitsios (2023) noted that partnerships with technology companies can provide not only the tools but also the training and technical expertise necessary for successful integration. Such collaborations may take the form of co-developing tailored educational technologies, funding infrastructure projects, or establishing long-term professional development programs for educators. By pooling resources and expertise, these models offer opportunities to bridge gaps between technological innovation and pedagogical practice. However, these partnerships must also be governed by ethical standards to ensure that educational goals remain paramount and are not subordinated to commercial interests.

The comparative analysis of developed and developing contexts underscores the extent to which systemic factors shape the outcomes of digital pedagogy. In countries with strong institutional support, the adoption of AI, AR, and VR is already contributing to higher levels of student engagement, deeper conceptual understanding, and more inclusive learning experiences (Muzata et al., 2024; Bathla et al., 2024). In developing contexts, however, these same technologies often remain aspirational due to limited infrastructure and insufficient training (Velu et al., 2025). These findings reveal the need for differentiated strategies that account for local realities. A one-size-fits-all approach is unlikely to succeed; instead, policies and interventions must be tailored to address the specific infrastructural, cultural, and economic conditions of different educational systems.

The limitations of existing research also warrant critical attention. Many of the studies included in this review focus on short-term outcomes, such as immediate improvements in student engagement or test scores, without examining the long-term impacts of digital pedagogy. Butler-Henderson and Crawford (2020) and Henriksen et al. (2024) observed that longitudinal studies evaluating the sustained effectiveness of digital tools across different learner populations remain scarce. Moreover, much of the research is concentrated in developed countries, leaving significant gaps in knowledge about how digital pedagogy operates in developing regions, particularly in rural or under-resourced settings. This imbalance restricts the generalizability of findings and reinforces the need for more inclusive and geographically diverse research agendas.

Another limitation lies in the fragmented nature of research on emerging technologies such as AR, VR, and AI. Hajirasouli and Banihashemi (2022) noted that while enthusiasm for immersive technologies is high, the pedagogical frameworks necessary for effective integration are still underdeveloped. Similarly, research on AI in education often focuses on technical feasibility rather than exploring how AI reshapes pedagogical relationships or student agency. These gaps point to the need for interdisciplinary research that bridges technical innovation with educational theory, ensuring that digital tools are employed in ways that align with pedagogical goals and values.

Future research must therefore expand beyond evaluating the efficacy of specific tools to address broader systemic, ethical, and pedagogical questions. Studies should investigate how policies, institutional frameworks, and cultural contexts mediate the impact of digital pedagogy.

Masripah, Anisah, Usman

Longitudinal and comparative research is particularly needed to understand how digital innovations influence learning outcomes over time and across different socio-economic and geographic settings. Furthermore, as technologies such as AI and VR become more sophisticated, research must address their ethical implications, including privacy concerns, equity of access, and the potential for reinforcing social divides. Only through such comprehensive inquiry can the promise of digital pedagogy be realized in ways that are both effective and equitable.

CONCLUSION

This narrative review has highlighted the transformative potential of digital pedagogy and technology-enhanced learning while simultaneously revealing the systemic challenges that inhibit its full realization. The findings indicate that artificial intelligence, augmented and virtual reality, and inclusive digital frameworks offer powerful opportunities to personalize instruction, create immersive experiences, and foster equity in education. However, disparities between developed and developing countries underscore the persistent digital divide, with infrastructural limitations, insufficient teacher training, and weak policy support impeding progress in many contexts. The discussion further revealed that systemic barriers, such as underfunded infrastructure, inconsistent governance, and ethical concerns around data privacy, exacerbate inequities and limit the sustainable adoption of these technologies. To address these challenges, governments should invest in structured teacher digital training programs, expand reliable internet infrastructure in underserved areas, and establish clear policy frameworks that encourage ethical and inclusive technology use. Collaborative partnerships between educational institutions, governments, and private sectors can provide additional resources and expertise to bridge gaps in access and implementation. Future research should focus on longitudinal and comparative studies that examine the long-term impacts of digital pedagogy, particularly in underrepresented contexts, while also addressing ethical implications associated with advanced technologies. Ultimately, the urgency of fostering inclusive, adaptive, and equitable digital learning environments remains critical, as these strategies represent the most effective means of ensuring that technology serves as a bridge rather than a barrier in global education.

REFERENCE

Ángel, N., Sánchez, J., Rubio, I., García-Martín, J., & Brito-Costa, S. (2022). Digital literacy in the university setting: a literature review of empirical studies between 2010 and 2021. *Frontiers in Psychology*, 13. https://doi.org/10.3389/fpsyg.2022.896800

Badiozaman, I., Leong, H., & Wong, W. (2020). Embracing educational disruption: a case study in making the shift to a remote learning environment. *Journal of Applied Research in Higher Education*, 14(1), 1-15. https://doi.org/10.1108/jarhe-08-2020-0256

- Bathla, A., Chawla, G., & Gupta, A. (2024). Benchmarking design-thinking as a tool for education: a systematic review and future research agenda. *Benchmarking: An International Journal*, 32(3), 965-991. https://doi.org/10.1108/bij-09-2023-0603
- Bharucha, J. (2018). Exploring education-related use of social media: business students perspectives in a changing India. *Education* + *Training*, 60(2), 198-212. https://doi.org/10.1108/et-07-2017-0105
- Boulton, P. (2020). Digitally proficient but disconnected from the outdoor world? A reflection on pedagogies used in an early years degree in higher education. *Journal of Applied Research in Higher Education*, 13(1), 195-210. https://doi.org/10.1108/jarhe-03-2019-0066
- Brito, P. (2024). Interdisciplinary teaching strategy for social sciences in primary education: a theoretical proposal with immersive virtual learning projections. *Metaverse Basic and Applied Research*, 3. https://doi.org/10.56294/mr2024.100
- Bulathwela, S., Pérez-Ortiz, M., Holloway, C., Cukurova, M., & Shawe-Taylor, J. (2024). Artificial intelligence alone will not democratise education: on educational inequality, technosolutionism and inclusive tools. *Sustainability,* 16(2), 781. https://doi.org/10.3390/su16020781
- Butler-Henderson, K., & Crawford, J. (2020). Digitally empowered students through teacher leadership: the role of authentic leadership. *Journal of Applied Learning & Teaching, 3*(Special Issue). https://doi.org/10.37074/jalt.2020.3.s1.6
- Carrim, N., & Bekker, T. (2022). Placing inclusive education in conversation with digital education. South African Computer Journal, 34(2). https://doi.org/10.18489/sacj.v34i2.1084
- Chun, J., Kim, J., Kim, H., Lee, G., Cho, S., Kim, C., ... & Heo, S. (2025). A comparative analysis of on-device AI-driven, self-regulated learning and traditional pedagogy in university health sciences education. *Applied Sciences*, 15(4), 1815. https://doi.org/10.3390/app15041815
- Daniela, L. (2021). Smart pedagogy as a driving wheel for technology-enhanced learning. *Technology, Knowledge and Learning*, 26(4), 711-718. https://doi.org/10.1007/s10758-021-09536-z
- Deák, C., & Kumar, B. (2024). A systematic review of STEAM education's role in nurturing digital competencies for sustainable innovations. *Education Sciences*, 14(3), 226. https://doi.org/10.3390/educsci14030226
- Eyal, L., & Gil, E. (2020). Design patterns for teaching in academic settings in future learning spaces. *British Journal of Educational Technology, 51*(4), 1061-1077. https://doi.org/10.1111/bjet.12923

- Gupta, P., & Mahajan, R. (2023). Investigating stakeholder perceptions of graduate employability. Higher Education Skills and Work-Based Learning, 14(1), 109-129. https://doi.org/10.1108/heswbl-11-2022-0239
- Hajirasouli, A., & Banihashemi, S. (2022). Augmented reality in architecture and construction education: state of the field and opportunities. *International Journal of Educational Technology in Higher Education*, 19(1). https://doi.org/10.1186/s41239-022-00343-9
- Henriksen, D., Mishra, P., & Stern, R. (2024). Creative learning for sustainability in a world of AI: action, mindset, values. *Sustainability*, 16(11), 4451. https://doi.org/10.3390/su16114451
- Hervás-Gómez, C., Noguera, M., Martín-Gutiérrez, Á., & Morales-Pérez, G. (2023). Validation of the attitude scale on prospective teachers' perceptions of the consequences on their psychological state: well-being and cognition. *International Journal of Environmental Research and Public Health*, 20(8), 5439. https://doi.org/10.3390/ijerph20085439
- Husseiny, F., & Abdallah, M. (2023). Higher education in the post-pandemic era, 221-235. https://doi.org/10.4018/978-1-6684-7015-2.ch013
- Jamil, M., Hasyim, A., Othman, M., Muqsith, A., Noh, N., & Kamal, M. (2023). Digital pedagogy policy in technical and vocational education and training (TVET) in Malaysia: fuzzy delphi approach. *Journal of Technical Education and Training,* 15(2). https://doi.org/10.30880/jtet.2023.15.02.001
- Kalinina, L., Ivanov, D., & Nikitin, N. (2021). Contemporary art thesauri in the context of the teaching profession development. *Perspectives of Science and Education*, 53(5), 32-47. https://doi.org/10.32744/pse.2021.5.3
- Luo, Q., & Zhu, Y. (2025). Application of artificial intelligence in digital media technology education. *Journal of Computational Methods in Sciences and Engineering*, 25(3), 2716-2731. https://doi.org/10.1177/14727978251321636
- Mahmud, M., Freeman, B., & Bakar, M. (2021). Technology in education: efficacies and outcomes of different delivery methods. *Interactive Technology and Smart Education*, 19(1), 20-38. https://doi.org/10.1108/itse-01-2021-0021
- Mays, T. (2023). Challenges and opportunities for open, distance, and digital education in the Global South, 321-336. https://doi.org/10.1007/978-981-19-2080-6 20
- Msimango, W. (2025). Empowering pre-service teachers to enhance inclusive education through technology, 59-86. https://doi.org/10.4018/979-8-3693-8759-7.ch003
- Muzata, A., Singh, G., Stepanov, M., & Musonda, I. (2024). Immersive learning: a systematic literature review on transforming engineering education through virtual reality. *Virtual Worlds*, 3(4), 480-505. https://doi.org/10.3390/virtualworlds3040026

- Ng, D., Tsui, M., & Yuen, M. (2022). Exploring the use of 3D printing in mathematics education: a scoping review. *Asian Journal for Mathematics Education*, 1(3), 338-358. https://doi.org/10.1177/27527263221129357
- Noguera, I., Quesada-Pallarès, C., & Sepúlveda-Parrini, P. (2024). Analysing student satisfaction with teaching strategies in vocational education. *Education* + *Training*, 66(10), 75-90. https://doi.org/10.1108/et-02-2023-0062
- O'Brien, A., & Forde, C. (2023). Health science staff and student experiences of teaching and assessing clinical skills using digital tools: a qualitative study. *Annals of Medicine*, 55(2). https://doi.org/10.1080/07853890.2023.2256656
- Ren, X., & Wu, M. (2025). Examining teaching competencies and challenges while integrating artificial intelligence in higher education. *TechTrends*, 69(3), 519-538. https://doi.org/10.1007/s11528-025-01055-3
- Restoule, J., & Snow, K. (2023). Conversations on indigenous centric ODDE design, 425-440. https://doi.org/10.1007/978-981-19-2080-6_92
- Rudolph, J., Tan, S., Crawford, J., & Butler-Henderson, K. (2022). Perceived quality of online learning during COVID-19 in higher education in Singapore: perspectives from students, lecturers, and academic leaders. *Educational Research for Policy and Practice, 22*(1), 171-191. https://doi.org/10.1007/s10671-022-09325-0
- Santos, J., Serrão, C., Amorim-Lopes, T., Rodrigues, A., Marina, S., Teixeira, A., ... & Duarte, I. (2023). Advantages and disadvantages, concerns, and solutions for emergency remote teaching during COVID-19: Portuguese lecturers' perspectives. *SAGE Open, 13*(4). https://doi.org/10.1177/21582440231221318
- Singh, A., & Ishrat, A. (2025). The role of social support in enhancing self-efficacy and learning satisfaction in online education among secondary school students. *On the Horizon: The International Journal of Learning Futures*. https://doi.org/10.1108/oth-03-2025-0033
- Sitaridis, I., & Kitsios, F. (2023). Digital entrepreneurship and entrepreneurship education: a review of the literature. *International Journal of Entrepreneurial Behaviour &* Research, 30(2/3), 277-304. https://doi.org/10.1108/ijebr-01-2023-0053
- Sugiyanto, S., Muryani, C., & Ni'matussyahara, D. (2024). Strengthening student empathy in geocapabilities: digital learning innovations and pedagogical strategies for disaster mitigation. *Contemporary Educational Technology, 16*(3), ep521. https://doi.org/10.30935/cedtech/14913
- Trinh, T., Thi-Nga, H., Hằng, N., Thai, D., Linh, H., Nhung, N., ... & Dinh, N. (2024). The influence of gender and training sector on the ICT competency of pre-service teachers in

- Vietnam: using the UNESCO ICT Competency Framework. *International Journal of Learning, Teaching and Educational Research*, 23(3), 411-427. https://doi.org/10.26803/ijlter.23.3.20
- Triyanto, T., Kholifah, N., Nurtanto, M., Nur, H., Saputro, I., Istanti, H., ... & Gadi, A. (2024). Student e-learning effectiveness based on pedagogy, evaluation and technology dimensions (PET-D): empirical studies in higher education in the COVID-19 epidemic. *Multidisciplinary Science Journal*, 6(12), 2024245. https://doi.org/10.31893/multiscience.2024245
- Velu, S., Wahid, I., & Tabianan, K. (2025). Stimulating innovative learning practices with tech: artefacts influence learners' actions. *Journal of Innovation and Entrepreneurship*, 14(1). https://doi.org/10.1186/s13731-025-00523-7
- Weisberg, L., & Dawson, K. (2023). The intersection of equity pedagogy and technology integration in preservice teacher education: a scoping review. *Journal of Teacher Education*, 74(4), 327-342. https://doi.org/10.1177/00224871231182129
- Wimpenny, K., Knowles, R., Ramsay, C., & Speculand, J. (2018). #3citylink: disrupting learning through a translocal art pedagogy exchange project. *International Journal of Art & Design Education*, 38(2), 328-343. https://doi.org/10.1111/jade.12193
- Xiao, J., & Evans, D. (2022). Anatomy education beyond the COVID-19 pandemic: a changing pedagogy. *Anatomical Sciences Education*, 15(6), 1138-1144. https://doi.org/10.1002/ase.2222
- Youhasan, P., Henning, M., Chen, Y., & Lyndon, M. (2022). Developing and evaluating an educational web-based tool for health professions education: the flipped classroom navigator. *BMC Medical Education*, 22(1). https://doi.org/10.1186/s12909-022-03647-6