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ABSTRACT: The increasing demand for contactless urban
logistics has driven the integration of autonomous delivery
robots into real world operations. This study investigates the
application of Deep Reinforcement Learning (DRL) to
enhance robot navigation in complex urban environments,
focusing on three advanced models: MODSRL, SOAR RL,
and NavDP. MODSRL employs a multi objective framework
to balance safety, efficiency, and success rate. SOAR RL is
designed to handle high obstacle densities using anticipatory
decision making. NavDP addresses the sim to real gap
through domain adaptation and few shot learning. The
models were trained and evaluated in simulation
environments (CARLA, nuScenes, Argoverse) and validated
using real world deployment data. Evaluation metrics
included success rate, collision frequency, and energy
efficiency. MODSRL achieved a 91.3% success rate with only
4.2% collision, outperforming baseline methods. SOAR RL
showed robust performance in obstacle rich scenarios but
highlighted a safety efficiency trade off. NavDP improved
real world success rates from 50% to 80% with minimal
adaptation data, demonstrating the feasibility of sim to real
transfer. The results confirm the effectiveness of DRL in
advancing autonomous delivery navigation. Integrating
domain generalization, hybrid learning, and real time
adaptation strategies will be essential to support large scale
urban deployment. Future research should prioritize
explainability, continual learning, and user centric navigation
policies.
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INTRODUCTION

The global expansion of autonomous delivery robots represents one of the most transformative

trends in urban logistics. This acceleration is driven by growing consumer demand for contactless
and efficient last mile delivery solutions, particularly in the wake of the COVID 19 pandemic. With
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increasing congestion in urban centers and the exponential rise in online retail, the role of
autonomous delivery technologies has become increasingly vital. Recent industry data highlights a
projected market valuation of approximately $1.39 billion by 2028, supported by a compound
annual growth rate (CAGR) exceeding 24% (S. Xu et al., 2023). This signals a pronounced shift in
how urban goods are moved, particularly at the last mile stage, where efficiency, responsiveness,
and scalability are paramount.

Companies such as Starship and Nuro have emerged as leaders in this domain. Starship, for
instance, has partnered with local businesses and academic institutions to integrate small delivery
robots capable of transporting food, groceries, and packages within neighborhoods and campuses
(Xia & Mei, 2024). Nuro has deployed compact, driverless delivery vehicles in suburban and urban
residential settings, emphasizing traffic law compliant navigation for food and grocery delivery (Xu
et al., 2023). Their deployments underscore the viability of autonomous agents operating in real
world environments and further demonstrate industry confidence in the technological readiness
of these systems.

Despite this growth, urban navigation remains a significant hurdle. Cities are inherently
unpredictable: high pedestrian density, erratic traffic patterns, cyclists, sudden road closures, and
construction zones pose continual obstacles. The navigation task for delivery robots in such
contexts is not merely about point to point movement but requires robust situational awareness
and dynamic responsiveness. Traditional rule based planning methods, which depend on static
maps and deterministic heuristics, offer partial utility in structured environments but have proven
insufficient for complex urban settings. While effective under predictable traffic flows, these
systems often falter when confronted with spontaneous or rare events, leading to delays, route
failures, or safety concerns (Lee et al., 2024; Zhang et al., 2020).

A core limitation of conventional planning algorithms is their dependency on pre mapped
environments, which do not account for evolving conditions. Static maps cannot adapt to sudden
obstructions or atypical pedestrian behavior. Additionally, such systems typically incur substantial
computational overhead, reducing their responsiveness and making them unsuitable for real time
operations essential to last mile logistics (Zhang et al., 2020). Moreover, their rigidity precludes
effective interaction with dynamic human agents, a key consideration in public urban settings.

These constraints have motivated a shift toward learning based navigation paradigms, most
notably Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL). Unlike rule
based systems, RL enables agents to learn optimal policies through trial and error interactions with
the environment, adapting behavior to maximize cumulative rewards. In urban delivery contexts,
this allows for the development of autonomous systems that learn to balance competing objectives
such as safety, speed, and pedestrian compliance based on real world data (Daranda & Dzemyda,
2022).

DRI, an extension of RL utilizing deep neural networks, further enhances this adaptability by

enabling policy learning in high dimensional state spaces characteristic of real world environments.
The integration of DRL with urban navigation has been shown to yield significant improvements
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over traditional planners. Notably, DRL models can incorporate temporal dependencies and multi
modal sensor inputs, allowing for more nuanced decision making in unpredictable settings (Karnan
et al.,, 2022). Techniques such as experience replay and prioritized sampling improve learning
efficiency, while policy regularization helps maintain safe and socially compliant behavior across
diverse scenarios (Gao et al., 2024).

Moreover, recent advances in hierarchical DRL have introduced modular architectures capable of
decomposing complex tasks into structured sub tasks, enhancing both interpretability and
robustness. This hierarchical approach is particularly useful in navigation systems, as it allows
agents to plan at multiple time scales short term obstacle avoidance and long term route
optimization thereby achieving smoother and more reliable performance (Gao et al., 2024).

The empirical benchmarking of DRL systems against conventional models has further solidified
their potential. Numerous studies have demonstrated that DRL based navigation consistently
outperforms static planning methods in terms of task success, safety, and adaptability to
unforeseen events (Yang et al., 2019). Importantly, DRL's capacity for continual learning enables
long term improvements post deployment, a critical feature for systems operating in ever changing
urban conditions. Benchmarking provides a rigorous foundation for comparative performance
evaluation and supports the generalization of findings across different operational domains and
datasets (Yang et al., 2019).

Nevertheless, despite the advancements in simulation and controlled testing, the transition from
simulated performance to real world deployment remains a core challenge. This sim to real gap is
driven by discrepancies in sensor noise, actuation models, environmental stochasticity, and visual
domain shifts. Robots trained entirely in simulation often experience degraded performance when
faced with real world complexities not captured during training. To address this, researchers have
begun integrating domain adaptation strategies and few shot learning techniques to allow for fine
tuning using minimal real world data (Daranda & Dzemyda, 2022). Such hybrid approaches
mitigate the limitations of zero shot transfer and help bridge the performance gap in real
deployments.

In conclusion, the landscape of autonomous delivery robotics is evolving rapidly, propelled by
urbanization, technological maturity, and commercial momentum. Companies like Starship and
Nuro exemplify how these technologies can be operationalized at scale, but significant scientific
and engineering challenges persist. Among these, navigation in complex urban environments
remains at the forefront. Traditional planning methods are increasingly being supplanted by
reinforcement learning based approaches due to their adaptability, scalability, and data driven
foundations. This study seeks to advance the field by evaluating cutting edge DRL architectures
with an emphasis on safety, generalizability, and real world transfer. By benchmarking these
systems across simulation and real world data, we aim to illuminate pathways for the reliable,
scalable deployment of autonomous navigation in urban delivery robotics.
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METHOD

To evaluate the performance of reinforcement learning (RL) models for urban robot navigation,
this study employs a set of standardized and realistic simulation environments. Among these,
CARLA (Car Learning to Act) serves as a primary platform due to its ability to emulate diverse
urban scenarios. CARLA provides high fidelity city maps, dynamic traffic actors, and realistic
pedestrian models, thereby offering a safe yet comprehensive testbed for autonomous driving
systems (Jiang et al., 2021). Similarly, the nuScenes dataset is used for its extensive real world urban
sensor data, including annotated lidar, radar, and camera inputs. This choice is motivated by its
representativeness of dense urban traffic conditions, making it particularly effective for testing
perception and localization capabilities in complex cityscapes where accurate sensor fusion is
critical (Jiang et al., 2021). Additionally, Argoverse is incorporated to validate performance on map
centric urban mobility tasks.

These simulation platforms not only replicate physical conditions such as weather, road textures,
and obstacle layouts but also allow the modeling of real time interactions between multiple agents.
They offer an effective compromise between risk free experimentation and environmental realism,
making them highly suitable for developing and testing deep reinforcement learning (DRL)
algorithms in urban delivery contexts (Scheikl et al., 2023).

The study evaluates three key DRL architectures: MODSRL, SOAR RL, and NavDP. MODSRL
is a multi objective framework that balances competing goals such as safety, speed, and path
efficiency. SOAR RL is designed for dynamic obstacle rich scenarios and employs reactive decision
making with predictive modeling for obstacle trajectories. NavDP incorporates domain adaptation
strategies for transferring navigation policies from simulated to real environments using minimal
in domain training data.

Each model is trained using episodic reinforcement learning with a reward function that integrates
multiple metrics, including distance to goal, number of collisions, energy consumed, and adherence
to social norms. The policies are optimized using proximal policy optimization (PPO) or soft actor
critic (SAC), depending on the architecture’s complexity. Hierarchical components are included in
some models to separate high level goal planning from low level motor control.

A comprehensive set of performance metrics is applied to benchmark the navigation capabilities
of each model. The success rate is the proportion of completed navigation tasks without failures
or deviations. The collision rate quantifies the frequency of impacts with static or dynamic
obstacles. Path efficiency measures the actual travel distance relative to the optimal path, while
average task time assesses the timeliness of navigation execution (Elsken et al., 2019).

Additional metrics include energy consumption (kJ) calculated over each episode and user related
indicators such as comfort or safety compliance in multi agent scenarios. These metrics are chosen
to ensure holistic evaluation and are consistent with prior DRL benchmarking standards (Elsken
et al,, 2019).
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A key component of this methodology is the transition from simulation trained policies to real
world deployment. Given the inherent domain shift between simulated and physical environments
stemming from sensor noise, lighting conditions, actuation discrepancies, and unmodeled events
domain adaptation strategies are crucial.

This study employs several adaptation approaches. First, domain adversarial training is used to
minimize the divergence between source (simulation) and target (real world) feature distributions.
The objective is to learn domain invariant representations that generalize across different
operational conditions (Hou et al., 2021; Tonioni et al., 2019). This is achieved through auxiliary
discriminators that penalize domain specific cues in the latent feature space.

Second, few shot learning is integrated to enable the models to adapt quickly using minimal real
world data samples. Meta learning algorithms are applied to leverage prior experience across tasks,
thus enabling efficient transfer even in the presence of limited new domain exposure (Bonardi et
al., 2020; Zhao et al., 2020). Such techniques are essential in urban navigation tasks, where
exhaustive real world data collection is impractical.

Third, SimGAN and similar generative approaches are employed to augment simulation realism.
By translating synthetic frames into photo realistic outputs, these techniques reduce the perceptual
gap during inference and improve the robustness of perception modules (Jiang et al., 2021).

Training is conducted in simulated environments using curriculum learning to progressively
introduce complexity, such as dynamic pedestrian flows, irregular vehicle patterns, and
environmental noise. Episodes are capped at a maximum step count or until task
completion/failure. Models are evaluated across three conditions: (1) in distribution simulation,
(2) out of distribution simulation, and (3) real world settings (post adaptation).

For real world testing, limited field trials are conducted using pre mapped urban areas (e.g., campus
zones and residential streets with controlled pedestrian traffic). Policy deployment is performed
on embedded compute platforms, such as Jetson AGX, which support onboard inference and

logging.

The models are implemented using Python and PyTorch. Training is distributed across multt GPU
clusters, and simulation interfacing is handled through ROS and OpenAl Gym compatible
wrappers. Hyperparameters and environment configurations are made publicly available for

reproducibility.

In summary, this methodology combines high fidelity simulations, robust DRL architectures,
standard benchmarking metrics, and advanced adaptation strategies to ensure both rigorous testing
and real world applicability. The integration of domain adaptation and few shot learning
significantly enhances the transferability of trained models, paving the way for scalable
autonomous navigation in complex urban landscapes.
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RESULT AND DISCUSSION

Performance of MODSRL Compared to Baseline Models

The Multi Objective Deep Reinforcement Learning (MODSRL) framework demonstrated
significant improvements in navigation outcomes when benchmarked against three established
baseline models: Collaborative Active Deep Reinforcement Learning (CADRL), Omnidirectional
Multi Agent Reinforcement Learning (OM SARL), and Long Short Term Memory based
Reinforcement Learning (LSTM RL). Unlike single objective architectures, MODSRL
simultaneously optimizes for multiple goals, including task completion, collision avoidance, and
energy efficiency (Xu et al., 2020). This multi objective approach allows MODSRL to dynamically
adjust to competing environmental demands by prioritizing safety in dense scenarios and efficiency

in sparse conditions.

Table 1. Performance Comparison of MODSRL and Baseline Models

Model Success Rate Collision Rate Notes
%) %)

CADRL 76.5 10.2 Struggles with coordination in multi agent
settings

OM SARL 84.9 — Limited handling of dynamic agent distribution

LSTM RL 821 8.7 Computational inefficiency, limited
generalization

MODSRL 91.3 4.2 Multi  objective  optimization  ensures

robustness in urban environments
As illustrated in Table 1, MODSRL achieved a success rate of 91.3%, which exceeds CADRL by
14.8 percentage points, OM SARL by 6.4, and LSTM RL by 9.2. Furthermore, its collision rate
was significantly lower at 4.2%, compared to 10.2% for CADRL and 8.7% for LSTM RL. These
differences affirm the benefits of multi objective optimization in enhancing navigation robustness

under complex urban conditions (Z. Xu et al., 2020).

The superiority of MODSRL was particulatly evident in scenarios involving crowd navigation and
dynamic agent distribution. Traditional models struggled with real time coordination, often
reacting inadequately to sudden changes in pedestrian flow or traffic congestion. In contrast,
MODSRL maintained high performance by adjusting its navigation strategy based on continuous
environmental feedback.

Obstacle Adaptability and Trade offs in SOAR RL

The SOAR RL architecture exhibited effective adaptability in obstacle rich environments, with
success rates of 98.0% in sparse conditions and 87.1% in high density scenarios. As shown in
Table 2, collision rates rose from 1.2% to 13.2% as the number of dynamic obstacles increased.
These results highlight the scalability of SOAR RL but also reveal the cost of maintaining safety
in increasingly constrained spaces.
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Table 2. SOAR RL Performance in Varying Obstacle Densities
Condition Success Rate Collision Rate Notes
(o) (o)
Sparse Obstacles  98.0 1.2 Highly effective in low density
environments
High Density 87.1 13.2 Demonstrates scalability but with
Obstacles higher collision trade offs

SOAR RL’s robustness stems from its combination of reactive and anticipatory learning
components. The model incorporates trajectory prediction for surrounding agents, enabling
proactive adjustments that mitigate the risk of collision. This dual layer approach allows the robot
to navigate with foresight, a crucial advantage in environments with unpredictable obstacle

dynamics.

However, SOAR RL also illustrates the fundamental trade off in reinforcement learning between
safety and efficiency. For example, in high pedestrian density zones, conservative policies reduced
collisions by 35% compared to aggressive strategies, but at the expense of a 20% increase in travel
time and a 15% rise in energy use. Conversely, aggressive policies shortened routes but introduced
higher collision likelihood, underscoring the need for balanced hybrid approaches (Jiang et al.,
2021).

Sim to Real Transfer and Domain Adaptation via NavDP

The NavDP model addresses one of the most persistent challenges in robotics: the sim to real
transfer. Zero shot RL, while highly successful in simulation (99.8%), showed a sharp drop to
67.0% success in real world deployment. By contrast, NavDP, when combined with few shot fine
tuning using minimal real world data, raised the real world success rate from 50.0% to 80.0% (see
Table 3). This 30 percentage point gain underscores the effectiveness of domain adaptation
techniques in real world applications.

Table 3. Sim to Real Transfer Performance of NavDP

Model Simulation Real World Notes
Success (%) Success (%)

Zero shot RL 99.8 67.0 High simulation accuracy, but poor
real world transferability

Baseline RL — 50.0 Without adaptation, performance is
limited

NavDP + Few - 80.0 Domain randomization and

shot Fine tuning adaptation improve transfer
effectiveness

NavDP leverages domain randomization and adversarial training to produce domain invariant
representations, enabling more generalized navigation policies. Domain randomization introduces

98 | Digitus : Journal of Computer Science Applications https://journal.idscipub.com/digitus


https://journal.idscipub.com/digitus

Generalizable and Energy Efficient Deep Reinforcement Learning for Urban Delivery Robot
Navigation
Sari and Munthe

controlled variability into the simulation altering lighting, textures, and motion dynamics while
adversarial domain adaptation techniques ensure that learned features align with real world sensory
inputs (Tonioni et al., 2019).

The integration of few shot learning allows the model to rapidly adapt to novel environments with
limited data. Meta learning frameworks underpin this adaptability by drawing on prior simulation
experience to guide new learning tasks (Bonardi et al., 2020). These strategies significantly reduce
the deployment burden and data collection costs, thus enabling scalable deployment across diverse

environments.

Datasets such as the Robotic Room Dataset (RRD) and environment specific variations of
CARLA were used to evaluate these transfers. These datasets simulate key real world conditions,
including dynamic interactions, occlusions, and path obstructions, providing a rigorous benchmark
for assessing real world transferability.

Energy Efficiency Across DRL Models and Environments

The final performance dimension assessed in this study is energy efficiency. MODSRL, SOAR RL,
and NavDP were evaluated in three simulation environments nuScenes, Argoverse, and CARLA
with energy consumption recorded in kilojoules per episode (Table 4).

Table 4. Energy Efficiency Across DRL Models and Environments

Model Environment Avg. Energy Success Collision Notes
Consumption Rate (%) Rate (%)
()

MODSRL nuScenes 11.8 92.5 2.5 Multi  objective
optimization
includes energy

SOAR RL Argoverse 13.0 89.0 - Slightly ~ higher
energy use

NavDP CARLA 12.4 91.3 — Balanced energy
performance
trade off

MODSRL achieved the highest overall energy efficiency with an average consumption of 11.8 kJ
in nuScenes while maintaining a success rate of 92.5% and collision rate of 2.5%. In contrast,
SOAR RL, tested in Argoverse, consumed slightly more energy (13.0 kJ) with a success rate of
89.0%. NavDP, evaluated in CARLA, reported an average energy use of 12.4 kJ alongside a success
rate of 91.3%.

These results confirm that DRL models can be tuned not only for navigation accuracy but also for
energy optimization. MODSRL’s multi objective design, which incorporates energy as an explicit
optimization goal, is particularly advantageous for resource constrained robotic systems (Z. Xu et
al., 2020). However, trade offs between energy use and performance remain. Energy efficient
strategies may extend travel times and reduce task throughput, while performance optimized
models might incur higher energy costs.
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Simulation environments like CARLA offer embedded energy models that estimate consumption
based on motion dynamics, actuator profiles, and battery simulation (Jiang et al., 2021). These
tools allow for comprehensive evaluations of navigation strategies across both operational and
energy efficiency metrics, aligning technical feasibility with sustainability considerations in urban
robotics.

In summary, the results demonstrate that multi objective DRL models such as MODSRL
consistently outperform traditional and single objective approaches across safety, success rate, and
energy efficiency. SOAR RL offers scalable safety performance in dynamic environments but must
manage safety efficiency trade offs. NavDP effectively bridges the sim to real gap, and energy
benchmarking reinforces the relevance of efficient planning in deployment critical robotics
applications. Together, these findings validate the efficacy of DRL in autonomous delivery and
suggest clear pathways for real world deployment.

Scalability Constraints in DRL for Real World Deployments

The application of Deep Reinforcement Learning (DRL) in urban delivery robotics holds
substantial promise, particularly in enhancing autonomous navigation capabilities in complex
environments. However, the results presented in this study also reveal a set of persistent limitations
that must be addressed to facilitate broader and more reliable deployment. One of the most
significant barriers to the real world scalability of DRL models lies in their high computational
demands. Training these models involves extensive iteration across large state action spaces,
requiring substantial computational resources that may not be readily accessible in practical
deployment settings. This issue is particularly pronounced in urban environments, where the
navigation system must adapt to rapidly changing variables, such as pedestrian density, traffic
congestion, and environmental occlusions (Yingjie et al., 2025). The resulting discrepancy between
simulated and real world dynamics can lead to degraded performance when models are deployed
in unpredictable conditions.

Performance vs. Generalization Trade offs

Moreover, while MODSRL and SOAR RL demonstrate strong performance in simulation, their
applicability in live scenarios hinges on generalization. Many DRL models, when tuned for
maximum performance in a specific domain, fall victim to overfitting. This effect, while yielding
high success rates in controlled simulations, often results in poor transferability to new
environments. The problem is exacerbated in urban settings, where human behavior,
infrastructural layout, and environmental stimuli vary widely. This tension between performance
optimization and generalization represents a critical challenge in current DRL design (Yingjie et
al., 2025). Approaches such as regularization, ensemble learning, and dropout have been
introduced to increase model robustness, while domain adaptation and transfer learning
techniques have become standard for mitigating the negative effects of overfitting (Wang et al.,
2024).

Hybrid Learning Architectures for Obstacle Rich Environments

In terms of obstacle navigation and real time reactivity, SOAR RL offers clear advantages by
blending reactive and predictive capabilities. Nevertheless, its performance degrades as obstacle
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density increases, revealing a scalability limit when managing complex real time interactions. This
limitation signals a need for further exploration into hybrid models that integrate both model based
and model free learning. Such approaches may enable DRL systems to leverage the strengths of
deterministic planning while maintaining the flexibility and adaptability of learning based
techniques (Vieira et al.,, 2025). Additionally, hybrid architectures may be better suited to
incorporate explicit environmental constraints and deliver more interpretable behavior, which is
crucial for deployment in public spaces.

Model Explainability and Public Trust

Interpretability itself is another critical concern. Despite their functional effectiveness, DRL
models often function as black boxes, making their decision making processes difficult to audit or
explain to stakeholders. In the context of urban delivery, this opacity may hinder regulatory
approval and reduce public trust, particulatly in cases involving near misses with pedestrians or
unexpected detours. Therefore, explainability frameworks tailored to urban navigation such as
trajectory heatmaps or causal policy explanations are essential for building transparency and
accountability (Whittlestone et al., 2021). Enhancing explainability will be especially important as
DRL systems are deployed in multi agent contexts, where coordination with humans and other
robots must be seamless and predictable.

Effective Transfer Learning with NavDP

The success of NavDP in bridging the sim to real gap further reinforces the value of domain
adaptation and few shot learning strategies. Zero shot DRL, while efficient in simulation, cannot
accommodate the nuanced discrepancies that arise in real world contexts. By contrast, NavDP’s
ability to adapt using limited real world data sets a precedent for scalable deployment across diverse
environments. This also emphasizes the importance of robust benchmarking datasets that include
realistic interactions and sensor noise, as these components are essential to train and evaluate
models that are not only high performing but also resilient.

Meta and Continual Learning for Real Time Adaptation

From a forward looking perspective, several directions emerge as particularly promising. First, the
integration of meta learning techniques into DRL pipelines could enhance the adaptability of these
systems in real time. Meta learning allows models to learn how to learn, thereby reducing the time
and data required to acclimate to new tasks or environments (Yingjie et al., 2025). This capability
is critical in urban logistics, where delivery routes, obstacles, and customer preferences can change
dynamically. Second, continual learning frameworks can ensure that deployed DRL systems
remain up to date by incorporating new information over time without catastrophic forgetting.
When paired with online learning strategies, these models can evolve alongside their operating
environments, maintaining relevance without exhaustive retraining cycles (Bridgelall, 2024).

User Centric and Collaborative Learning Strategies

Moreover, future DRL integration efforts should emphasize user centric navigation strategies.
Learning systems that can adapt to customer preferences such as delivery time windows, noise
sensitivity, or accessibility constraints stand to improve not only operational efficiency but also
user satisfaction. Incorporating consumer behavioral data into the reward function may help in
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aligning navigation policies with end user expectations, thereby enhancing the commercial viability
of autonomous delivery systems.

Finally, collaborative learning techniques represent a compelling avenue for improving
generalization and robustness. By enabling multiple delivery robots to share experiences and policy
updates, these methods facilitate distributed learning and accelerated adaptation. Shared learning
environments can enable broader pattern recognition across deployments, ultimately leading to
more generalized navigation policies that are effective across varied geographies and user
demographics.

CONCLUSION

This study demonstrates that Deep Reinforcement Learning (DRL) architectures—MODSRL,
SOAR RL, and NavDP—offer substantial advantages for autonomous urban delivery navigation.
Compared with conventional methods, these models deliver higher success rates, improved safety,
and greater energy efficiency. MODSRL proved robust in multi-agent environments, SOAR RL
highlighted the trade-off between safety and efficiency in dense obstacle scenarios, and NavDP
effectively bridged the sim-to-real gap through domain adaptation and few-shot learning.

The findings underscore both the promise and challenges of DRL for large-scale deployment.
Persistent issues such as sim-to-real transfer gaps, model interpretability, and real-time scalability
require further exploration through hybrid learning, meta-learning, and collaborative strategies.
Future research should prioritize explainable and user-centric DRL approaches to build public
trust and regulatory acceptance, ensuring delivery robots evolve into reliable, safe, and sustainable
actors within the urban logistics ecosystem.
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