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ABSTRACT: The increasing demand for contactless urban 
logistics has driven the integration of autonomous delivery 
robots into real world operations. This study investigates the 
application of Deep Reinforcement Learning (DRL) to 
enhance robot navigation in complex urban environments, 
focusing on three advanced models: MODSRL, SOAR RL, 
and NavDP. MODSRL employs a multi objective framework 
to balance safety, efficiency, and success rate. SOAR RL is 
designed to handle high obstacle densities using anticipatory 
decision making. NavDP addresses the sim to real gap 
through domain adaptation and few shot learning. The 
models were trained and evaluated in simulation 
environments (CARLA, nuScenes, Argoverse) and validated 
using real world deployment data. Evaluation metrics 
included success rate, collision frequency, and energy 
efficiency. MODSRL achieved a 91.3% success rate with only 
4.2% collision, outperforming baseline methods. SOAR RL 
showed robust performance in obstacle rich scenarios but 
highlighted a safety efficiency trade off. NavDP improved 
real world success rates from 50% to 80% with minimal 
adaptation data, demonstrating the feasibility of sim to real 
transfer. The results confirm the effectiveness of DRL in 
advancing autonomous delivery navigation. Integrating 
domain generalization, hybrid learning, and real time 
adaptation strategies will be essential to support large scale 
urban deployment. Future research should prioritize 
explainability, continual learning, and user centric navigation 
policies.  
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INTRODUCTION 

The global expansion of autonomous delivery robots represents one of the most transformative 

trends in urban logistics. This acceleration is driven by growing consumer demand for contactless 

and efficient last mile delivery solutions, particularly in the wake of the COVID 19 pandemic. With 
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increasing congestion in urban centers and the exponential rise in online retail, the role of 

autonomous delivery technologies has become increasingly vital. Recent industry data highlights a 

projected market valuation of approximately $1.39 billion by 2028, supported by a compound 

annual growth rate (CAGR) exceeding 24% (S. Xu et al., 2023). This signals a pronounced shift in 

how urban goods are moved, particularly at the last mile stage, where efficiency, responsiveness, 

and scalability are paramount. 

Companies such as Starship and Nuro have emerged as leaders in this domain. Starship, for 

instance, has partnered with local businesses and academic institutions to integrate small delivery 

robots capable of transporting food, groceries, and packages within neighborhoods and campuses 

(Xia & Mei, 2024). Nuro has deployed compact, driverless delivery vehicles in suburban and urban 

residential settings, emphasizing traffic law compliant navigation for food and grocery delivery (Xu 

et al., 2023). Their deployments underscore the viability of autonomous agents operating in real 

world environments and further demonstrate industry confidence in the technological readiness 

of these systems. 

Despite this growth, urban navigation remains a significant hurdle. Cities are inherently 

unpredictable: high pedestrian density, erratic traffic patterns, cyclists, sudden road closures, and 

construction zones pose continual obstacles. The navigation task for delivery robots in such 

contexts is not merely about point to point movement but requires robust situational awareness 

and dynamic responsiveness. Traditional rule based planning methods, which depend on static 

maps and deterministic heuristics, offer partial utility in structured environments but have proven 

insufficient for complex urban settings. While effective under predictable traffic flows, these 

systems often falter when confronted with spontaneous or rare events, leading to delays, route 

failures, or safety concerns (Lee et al., 2024; Zhang et al., 2020). 

A core limitation of conventional planning algorithms is their dependency on pre mapped 

environments, which do not account for evolving conditions. Static maps cannot adapt to sudden 

obstructions or atypical pedestrian behavior. Additionally, such systems typically incur substantial 

computational overhead, reducing their responsiveness and making them unsuitable for real time 

operations essential to last mile logistics (Zhang et al., 2020). Moreover, their rigidity precludes 

effective interaction with dynamic human agents, a key consideration in public urban settings. 

These constraints have motivated a shift toward learning based navigation paradigms, most 

notably Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL). Unlike rule 

based systems, RL enables agents to learn optimal policies through trial and error interactions with 

the environment, adapting behavior to maximize cumulative rewards. In urban delivery contexts, 

this allows for the development of autonomous systems that learn to balance competing objectives 

such as safety, speed, and pedestrian compliance based on real world data (Daranda & Dzemyda, 

2022). 

DRL, an extension of RL utilizing deep neural networks, further enhances this adaptability by 

enabling policy learning in high dimensional state spaces characteristic of real world environments. 

The integration of DRL with urban navigation has been shown to yield significant improvements 
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over traditional planners. Notably, DRL models can incorporate temporal dependencies and multi 

modal sensor inputs, allowing for more nuanced decision making in unpredictable settings (Karnan 

et al., 2022). Techniques such as experience replay and prioritized sampling improve learning 

efficiency, while policy regularization helps maintain safe and socially compliant behavior across 

diverse scenarios (Gao et al., 2024). 

Moreover, recent advances in hierarchical DRL have introduced modular architectures capable of 

decomposing complex tasks into structured sub tasks, enhancing both interpretability and 

robustness. This hierarchical approach is particularly useful in navigation systems, as it allows 

agents to plan at multiple time scales short term obstacle avoidance and long term route 

optimization thereby achieving smoother and more reliable performance (Gao et al., 2024). 

The empirical benchmarking of DRL systems against conventional models has further solidified 

their potential. Numerous studies have demonstrated that DRL based navigation consistently 

outperforms static planning methods in terms of task success, safety, and adaptability to 

unforeseen events (Yang et al., 2019). Importantly, DRL's capacity for continual learning enables 

long term improvements post deployment, a critical feature for systems operating in ever changing 

urban conditions. Benchmarking provides a rigorous foundation for comparative performance 

evaluation and supports the generalization of findings across different operational domains and 

datasets (Yang et al., 2019). 

Nevertheless, despite the advancements in simulation and controlled testing, the transition from 

simulated performance to real world deployment remains a core challenge. This sim to real gap is 

driven by discrepancies in sensor noise, actuation models, environmental stochasticity, and visual 

domain shifts. Robots trained entirely in simulation often experience degraded performance when 

faced with real world complexities not captured during training. To address this, researchers have 

begun integrating domain adaptation strategies and few shot learning techniques to allow for fine 

tuning using minimal real world data (Daranda & Dzemyda, 2022). Such hybrid approaches 

mitigate the limitations of zero shot transfer and help bridge the performance gap in real 

deployments. 

In conclusion, the landscape of autonomous delivery robotics is evolving rapidly, propelled by 

urbanization, technological maturity, and commercial momentum. Companies like Starship and 

Nuro exemplify how these technologies can be operationalized at scale, but significant scientific 

and engineering challenges persist. Among these, navigation in complex urban environments 

remains at the forefront. Traditional planning methods are increasingly being supplanted by 

reinforcement learning based approaches due to their adaptability, scalability, and data driven 

foundations. This study seeks to advance the field by evaluating cutting edge DRL architectures 

with an emphasis on safety, generalizability, and real world transfer. By benchmarking these 

systems across simulation and real world data, we aim to illuminate pathways for the reliable, 

scalable deployment of autonomous navigation in urban delivery robotics. 
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METHOD 

To evaluate the performance of reinforcement learning (RL) models for urban robot navigation, 

this study employs a set of standardized and realistic simulation environments. Among these, 

CARLA (Car Learning to Act) serves as a primary platform due to its ability to emulate diverse 

urban scenarios. CARLA provides high fidelity city maps, dynamic traffic actors, and realistic 

pedestrian models, thereby offering a safe yet comprehensive testbed for autonomous driving 

systems (Jiang et al., 2021). Similarly, the nuScenes dataset is used for its extensive real world urban 

sensor data, including annotated lidar, radar, and camera inputs. This choice is motivated by its 

representativeness of dense urban traffic conditions, making it particularly effective for testing 

perception and localization capabilities in complex cityscapes where accurate sensor fusion is 

critical (Jiang et al., 2021). Additionally, Argoverse is incorporated to validate performance on map 

centric urban mobility tasks. 

These simulation platforms not only replicate physical conditions such as weather, road textures, 

and obstacle layouts but also allow the modeling of real time interactions between multiple agents. 

They offer an effective compromise between risk free experimentation and environmental realism, 

making them highly suitable for developing and testing deep reinforcement learning (DRL) 

algorithms in urban delivery contexts (Scheikl et al., 2023). 

The study evaluates three key DRL architectures: MODSRL, SOAR RL, and NavDP. MODSRL 

is a multi objective framework that balances competing goals such as safety, speed, and path 

efficiency. SOAR RL is designed for dynamic obstacle rich scenarios and employs reactive decision 

making with predictive modeling for obstacle trajectories. NavDP incorporates domain adaptation 

strategies for transferring navigation policies from simulated to real environments using minimal 

in domain training data. 

Each model is trained using episodic reinforcement learning with a reward function that integrates 

multiple metrics, including distance to goal, number of collisions, energy consumed, and adherence 

to social norms. The policies are optimized using proximal policy optimization (PPO) or soft actor 

critic (SAC), depending on the architecture’s complexity. Hierarchical components are included in 

some models to separate high level goal planning from low level motor control. 

A comprehensive set of performance metrics is applied to benchmark the navigation capabilities 

of each model. The success rate is the proportion of completed navigation tasks without failures 

or deviations. The collision rate quantifies the frequency of impacts with static or dynamic 

obstacles. Path efficiency measures the actual travel distance relative to the optimal path, while 

average task time assesses the timeliness of navigation execution (Elsken et al., 2019). 

Additional metrics include energy consumption (kJ) calculated over each episode and user related 

indicators such as comfort or safety compliance in multi agent scenarios. These metrics are chosen 

to ensure holistic evaluation and are consistent with prior DRL benchmarking standards (Elsken 

et al., 2019). 
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A key component of this methodology is the transition from simulation trained policies to real 

world deployment. Given the inherent domain shift between simulated and physical environments 

stemming from sensor noise, lighting conditions, actuation discrepancies, and unmodeled events 

domain adaptation strategies are crucial. 

This study employs several adaptation approaches. First, domain adversarial training is used to 

minimize the divergence between source (simulation) and target (real world) feature distributions. 

The objective is to learn domain invariant representations that generalize across different 

operational conditions (Hou et al., 2021; Tonioni et al., 2019). This is achieved through auxiliary 

discriminators that penalize domain specific cues in the latent feature space. 

Second, few shot learning is integrated to enable the models to adapt quickly using minimal real 

world data samples. Meta learning algorithms are applied to leverage prior experience across tasks, 

thus enabling efficient transfer even in the presence of limited new domain exposure (Bonardi et 

al., 2020; Zhao et al., 2020). Such techniques are essential in urban navigation tasks, where 

exhaustive real world data collection is impractical. 

Third, SimGAN and similar generative approaches are employed to augment simulation realism. 

By translating synthetic frames into photo realistic outputs, these techniques reduce the perceptual 

gap during inference and improve the robustness of perception modules (Jiang et al., 2021). 

Training is conducted in simulated environments using curriculum learning to progressively 

introduce complexity, such as dynamic pedestrian flows, irregular vehicle patterns, and 

environmental noise. Episodes are capped at a maximum step count or until task 

completion/failure. Models are evaluated across three conditions: (1) in distribution simulation, 

(2) out of distribution simulation, and (3) real world settings (post adaptation). 

For real world testing, limited field trials are conducted using pre mapped urban areas (e.g., campus 

zones and residential streets with controlled pedestrian traffic). Policy deployment is performed 

on embedded compute platforms, such as Jetson AGX, which support onboard inference and 

logging. 

The models are implemented using Python and PyTorch. Training is distributed across multi GPU 

clusters, and simulation interfacing is handled through ROS and OpenAI Gym compatible 

wrappers. Hyperparameters and environment configurations are made publicly available for 

reproducibility. 

In summary, this methodology combines high fidelity simulations, robust DRL architectures, 

standard benchmarking metrics, and advanced adaptation strategies to ensure both rigorous testing 

and real world applicability. The integration of domain adaptation and few shot learning 

significantly enhances the transferability of trained models, paving the way for scalable 

autonomous navigation in complex urban landscapes. 
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RESULT AND DISCUSSION 

Performance of MODSRL Compared to Baseline Models 

The Multi Objective Deep Reinforcement Learning (MODSRL) framework demonstrated 

significant improvements in navigation outcomes when benchmarked against three established 

baseline models: Collaborative Active Deep Reinforcement Learning (CADRL), Omnidirectional 

Multi Agent Reinforcement Learning (OM SARL), and Long Short Term Memory based 

Reinforcement Learning (LSTM RL). Unlike single objective architectures, MODSRL 

simultaneously optimizes for multiple goals, including task completion, collision avoidance, and 

energy efficiency (Xu et al., 2020). This multi objective approach allows MODSRL to dynamically 

adjust to competing environmental demands by prioritizing safety in dense scenarios and efficiency 

in sparse conditions. 

Table 1. Performance Comparison of MODSRL and Baseline Models 

Model Success Rate 

(%) 

Collision Rate 

(%) 

Notes 

CADRL 76.5 10.2 Struggles with coordination in multi agent 

settings 

OM SARL 84.9 – Limited handling of dynamic agent distribution 

LSTM RL 82.1 8.7 Computational inefficiency, limited 

generalization 

MODSRL 91.3 4.2 Multi objective optimization ensures 

robustness in urban environments 

As illustrated in Table 1, MODSRL achieved a success rate of 91.3%, which exceeds CADRL by 

14.8 percentage points, OM SARL by 6.4, and LSTM RL by 9.2. Furthermore, its collision rate 

was significantly lower at 4.2%, compared to 10.2% for CADRL and 8.7% for LSTM RL. These 

differences affirm the benefits of multi objective optimization in enhancing navigation robustness 

under complex urban conditions (Z. Xu et al., 2020). 

The superiority of MODSRL was particularly evident in scenarios involving crowd navigation and 

dynamic agent distribution. Traditional models struggled with real time coordination, often 

reacting inadequately to sudden changes in pedestrian flow or traffic congestion. In contrast, 

MODSRL maintained high performance by adjusting its navigation strategy based on continuous 

environmental feedback. 

Obstacle Adaptability and Trade offs in SOAR RL 

The SOAR RL architecture exhibited effective adaptability in obstacle rich environments, with 

success rates of 98.0% in sparse conditions and 87.1% in high density scenarios. As shown in 

Table 2, collision rates rose from 1.2% to 13.2% as the number of dynamic obstacles increased. 

These results highlight the scalability of SOAR RL but also reveal the cost of maintaining safety 

in increasingly constrained spaces. 
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Table 2. SOAR RL Performance in Varying Obstacle Densities 

Condition Success Rate 

(%) 

Collision Rate 

(%) 

Notes 

Sparse Obstacles 98.0 1.2 Highly effective in low density 

environments 

High Density 

Obstacles 

87.1 13.2 Demonstrates scalability but with 

higher collision trade offs 

 

SOAR RL’s robustness stems from its combination of reactive and anticipatory learning 

components. The model incorporates trajectory prediction for surrounding agents, enabling 

proactive adjustments that mitigate the risk of collision. This dual layer approach allows the robot 

to navigate with foresight, a crucial advantage in environments with unpredictable obstacle 

dynamics. 

However, SOAR RL also illustrates the fundamental trade off in reinforcement learning between 

safety and efficiency. For example, in high pedestrian density zones, conservative policies reduced 

collisions by 35% compared to aggressive strategies, but at the expense of a 20% increase in travel 

time and a 15% rise in energy use. Conversely, aggressive policies shortened routes but introduced 

higher collision likelihood, underscoring the need for balanced hybrid approaches (Jiang et al., 

2021). 

 

Sim to Real Transfer and Domain Adaptation via NavDP 

The NavDP model addresses one of the most persistent challenges in robotics: the sim to real 

transfer. Zero shot RL, while highly successful in simulation (99.8%), showed a sharp drop to 

67.0% success in real world deployment. By contrast, NavDP, when combined with few shot fine 

tuning using minimal real world data, raised the real world success rate from 50.0% to 80.0% (see 

Table 3). This 30 percentage point gain underscores the effectiveness of domain adaptation 

techniques in real world applications. 

Table 3. Sim to Real Transfer Performance of NavDP 

Model Simulation 

Success (%) 

Real World 

Success (%) 

Notes 

Zero shot RL 99.8 67.0 High simulation accuracy, but poor 

real world transferability 

Baseline RL – 50.0 Without adaptation, performance is 

limited 

NavDP + Few 

shot Fine tuning 

– 80.0 Domain randomization and 

adaptation improve transfer 

effectiveness 

NavDP leverages domain randomization and adversarial training to produce domain invariant 

representations, enabling more generalized navigation policies. Domain randomization introduces 
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controlled variability into the simulation altering lighting, textures, and motion dynamics while 

adversarial domain adaptation techniques ensure that learned features align with real world sensory 

inputs (Tonioni et al., 2019). 

The integration of few shot learning allows the model to rapidly adapt to novel environments with 

limited data. Meta learning frameworks underpin this adaptability by drawing on prior simulation 

experience to guide new learning tasks (Bonardi et al., 2020). These strategies significantly reduce 

the deployment burden and data collection costs, thus enabling scalable deployment across diverse 

environments. 

Datasets such as the Robotic Room Dataset (RRD) and environment specific variations of 

CARLA were used to evaluate these transfers. These datasets simulate key real world conditions, 

including dynamic interactions, occlusions, and path obstructions, providing a rigorous benchmark 

for assessing real world transferability. 

 

Energy Efficiency Across DRL Models and Environments 

The final performance dimension assessed in this study is energy efficiency. MODSRL, SOAR RL, 

and NavDP were evaluated in three simulation environments nuScenes, Argoverse, and CARLA 

with energy consumption recorded in kilojoules per episode (Table 4). 

Table 4. Energy Efficiency Across DRL Models and Environments 

Model Environment Avg. Energy 

Consumption 

(kJ) 

Success 

Rate (%) 

Collision 

Rate (%) 

Notes 

MODSRL nuScenes 11.8 92.5 2.5 Multi objective 

optimization 

includes energy 

SOAR RL Argoverse 13.0 89.0 – Slightly higher 

energy use 

NavDP CARLA 12.4 91.3 – Balanced energy 

performance 

trade off 

MODSRL achieved the highest overall energy efficiency with an average consumption of 11.8 kJ 

in nuScenes while maintaining a success rate of 92.5% and collision rate of 2.5%. In contrast, 

SOAR RL, tested in Argoverse, consumed slightly more energy (13.0 kJ) with a success rate of 

89.0%. NavDP, evaluated in CARLA, reported an average energy use of 12.4 kJ alongside a success 

rate of 91.3%. 

These results confirm that DRL models can be tuned not only for navigation accuracy but also for 

energy optimization. MODSRL’s multi objective design, which incorporates energy as an explicit 

optimization goal, is particularly advantageous for resource constrained robotic systems (Z. Xu et 

al., 2020). However, trade offs between energy use and performance remain. Energy efficient 

strategies may extend travel times and reduce task throughput, while performance optimized 

models might incur higher energy costs. 
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Simulation environments like CARLA offer embedded energy models that estimate consumption 

based on motion dynamics, actuator profiles, and battery simulation (Jiang et al., 2021). These 

tools allow for comprehensive evaluations of navigation strategies across both operational and 

energy efficiency metrics, aligning technical feasibility with sustainability considerations in urban 

robotics. 

In summary, the results demonstrate that multi objective DRL models such as MODSRL 

consistently outperform traditional and single objective approaches across safety, success rate, and 

energy efficiency. SOAR RL offers scalable safety performance in dynamic environments but must 

manage safety efficiency trade offs. NavDP effectively bridges the sim to real gap, and energy 

benchmarking reinforces the relevance of efficient planning in deployment critical robotics 

applications. Together, these findings validate the efficacy of DRL in autonomous delivery and 

suggest clear pathways for real world deployment. 

Scalability Constraints in DRL for Real World Deployments 

The application of Deep Reinforcement Learning (DRL) in urban delivery robotics holds 

substantial promise, particularly in enhancing autonomous navigation capabilities in complex 

environments. However, the results presented in this study also reveal a set of persistent limitations 

that must be addressed to facilitate broader and more reliable deployment. One of the most 

significant barriers to the real world scalability of DRL models lies in their high computational 

demands. Training these models involves extensive iteration across large state action spaces, 

requiring substantial computational resources that may not be readily accessible in practical 

deployment settings. This issue is particularly pronounced in urban environments, where the 

navigation system must adapt to rapidly changing variables, such as pedestrian density, traffic 

congestion, and environmental occlusions (Yingjie et al., 2025). The resulting discrepancy between 

simulated and real world dynamics can lead to degraded performance when models are deployed 

in unpredictable conditions. 

Performance vs. Generalization Trade offs 

Moreover, while MODSRL and SOAR RL demonstrate strong performance in simulation, their 

applicability in live scenarios hinges on generalization. Many DRL models, when tuned for 

maximum performance in a specific domain, fall victim to overfitting. This effect, while yielding 

high success rates in controlled simulations, often results in poor transferability to new 

environments. The problem is exacerbated in urban settings, where human behavior, 

infrastructural layout, and environmental stimuli vary widely. This tension between performance 

optimization and generalization represents a critical challenge in current DRL design (Yingjie et 

al., 2025). Approaches such as regularization, ensemble learning, and dropout have been 

introduced to increase model robustness, while domain adaptation and transfer learning 

techniques have become standard for mitigating the negative effects of overfitting (Wang et al., 

2024). 

Hybrid Learning Architectures for Obstacle Rich Environments 

In terms of obstacle navigation and real time reactivity, SOAR RL offers clear advantages by 

blending reactive and predictive capabilities. Nevertheless, its performance degrades as obstacle 
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density increases, revealing a scalability limit when managing complex real time interactions. This 

limitation signals a need for further exploration into hybrid models that integrate both model based 

and model free learning. Such approaches may enable DRL systems to leverage the strengths of 

deterministic planning while maintaining the flexibility and adaptability of learning based 

techniques (Vieira et al., 2025). Additionally, hybrid architectures may be better suited to 

incorporate explicit environmental constraints and deliver more interpretable behavior, which is 

crucial for deployment in public spaces. 

Model Explainability and Public Trust 

Interpretability itself is another critical concern. Despite their functional effectiveness, DRL 

models often function as black boxes, making their decision making processes difficult to audit or 

explain to stakeholders. In the context of urban delivery, this opacity may hinder regulatory 

approval and reduce public trust, particularly in cases involving near misses with pedestrians or 

unexpected detours. Therefore, explainability frameworks tailored to urban navigation such as 

trajectory heatmaps or causal policy explanations are essential for building transparency and 

accountability (Whittlestone et al., 2021). Enhancing explainability will be especially important as 

DRL systems are deployed in multi agent contexts, where coordination with humans and other 

robots must be seamless and predictable. 

Effective Transfer Learning with NavDP 

The success of NavDP in bridging the sim to real gap further reinforces the value of domain 

adaptation and few shot learning strategies. Zero shot DRL, while efficient in simulation, cannot 

accommodate the nuanced discrepancies that arise in real world contexts. By contrast, NavDP’s 

ability to adapt using limited real world data sets a precedent for scalable deployment across diverse 

environments. This also emphasizes the importance of robust benchmarking datasets that include 

realistic interactions and sensor noise, as these components are essential to train and evaluate 

models that are not only high performing but also resilient. 

Meta  and Continual Learning for Real Time Adaptation 

From a forward looking perspective, several directions emerge as particularly promising. First, the 

integration of meta learning techniques into DRL pipelines could enhance the adaptability of these 

systems in real time. Meta learning allows models to learn how to learn, thereby reducing the time 

and data required to acclimate to new tasks or environments (Yingjie et al., 2025). This capability 

is critical in urban logistics, where delivery routes, obstacles, and customer preferences can change 

dynamically. Second, continual learning frameworks can ensure that deployed DRL systems 

remain up to date by incorporating new information over time without catastrophic forgetting. 

When paired with online learning strategies, these models can evolve alongside their operating 

environments, maintaining relevance without exhaustive retraining cycles (Bridgelall, 2024). 

User Centric and Collaborative Learning Strategies 

Moreover, future DRL integration efforts should emphasize user centric navigation strategies. 

Learning systems that can adapt to customer preferences such as delivery time windows, noise 

sensitivity, or accessibility constraints stand to improve not only operational efficiency but also 

user satisfaction. Incorporating consumer behavioral data into the reward function may help in 
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aligning navigation policies with end user expectations, thereby enhancing the commercial viability 

of autonomous delivery systems. 

Finally, collaborative learning techniques represent a compelling avenue for improving 

generalization and robustness. By enabling multiple delivery robots to share experiences and policy 

updates, these methods facilitate distributed learning and accelerated adaptation. Shared learning 

environments can enable broader pattern recognition across deployments, ultimately leading to 

more generalized navigation policies that are effective across varied geographies and user 

demographics. 

 

CONCLUSION  

This study demonstrates that Deep Reinforcement Learning (DRL) architectures—MODSRL, 

SOAR RL, and NavDP—offer substantial advantages for autonomous urban delivery navigation. 

Compared with conventional methods, these models deliver higher success rates, improved safety, 

and greater energy efficiency. MODSRL proved robust in multi-agent environments, SOAR RL 

highlighted the trade-off between safety and efficiency in dense obstacle scenarios, and NavDP 

effectively bridged the sim-to-real gap through domain adaptation and few-shot learning. 

The findings underscore both the promise and challenges of DRL for large-scale deployment. 

Persistent issues such as sim-to-real transfer gaps, model interpretability, and real-time scalability 

require further exploration through hybrid learning, meta-learning, and collaborative strategies. 

Future research should prioritize explainable and user-centric DRL approaches to build public 

trust and regulatory acceptance, ensuring delivery robots evolve into reliable, safe, and sustainable 

actors within the urban logistics ecosystem.  
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