Digitus: Journal of Computer Science Applications

E-ISSN: 3031-3244

Volume. 2, Issue 1, January 2024

Page No: 22-32

Infrastructure Driven DevOps in Regulated Markets: A Case Study of Indonesia's Financial Sector

Purwo Agus Sucipto Universitas Jayabaya, Indonesia

Correspondent: purwoagussucipto@gmail.com

Received: December 7, 2023

Accepted: January 12, 2024

Published: January 31, 2024

Citation: Sucipto, P, A. (2024). Infrastructure Driven DevOps in Regulated Markets: A Case Study of Indonesia's Financial Sector. Digitus: Journal of Computer Science Applications, 2 (1), 22-32.

ABSTRACT: In regulated industries such as finance and healthcare, organizations must navigate the competing demands of digital innovation and strict compliance requirements. This study investigates how infrastructure localization enables the adoption of DevOps practices in Indonesia's compliance heavy sectors. Drawing on qualitative case studies of BCA and Bank Jago, the research examines how local cloud infrastructure, regulatory policies, and platform strategies converge to support agile software delivery. The methodology involves comparative analysis using publicly available institutional documents, cloud provider rollouts, and compliance frameworks. The study evaluates DevOps maturity through organizational strategies, toolchains, and infrastructure readiness while mapping them against regulatory standards such as ISO/IEC 27001 and the Personal Data Protection Act. The findings indicate that local cloud infrastructure helps reduce latency and legal risks, thereby supporting secure CI/CD pipelines. BCA illustrates the benefits of using enterprise-level platform engineering with OpenShift, while Bank Jago showcases the flexibility of cloud-native DevOps through rapid CI/CD deployment. Furthermore, the study discusses the balance between innovation and compliance, stressing the role of platform engineering, multi-cloud strategies, and Compliance as Code in minimizing vendor lock-in and regulatory risks. The conclusion underscores Indonesia's hybrid DevOps strategy as a blueprint for other emerging markets. Integrating infrastructure, policy, and talent development enables institutions to balance agility with governance, promoting scalable and compliant digital transformation in regulated sectors.

Keywords: Devops, Cloud Infrastructure, Compliance, Platform Engineering, Indonesiam, Regulated Sectors, CI/CD, Governance, Digital Transformation.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

The implementation of DevOps methodologies has significantly transformed modern software development by enabling continuous delivery, improving deployment frequency, and enhancing

Sucipto

the reliability of applications. In regulated sectors such as finance and healthcare, however, this transformation is often challenged by the complexity of adhering to stringent regulatory and compliance frameworks. Indonesia, an emerging digital economy, presents a compelling case study where the adoption of DevOps in regulated industries is being shaped by national infrastructure strategies, particularly the development of local cloud capabilities. This chapter explores the intersection of infrastructure localization and DevOps maturity in Indonesia's compliance sensitive sectors, with a focus on how regulated organizations navigate these dual priorities.

Regulated sectors encounter compliance challenges that slow DevOps adoption. For instance, in Indonesia, the Financial Services Authority (OJK) has issued strict guidelines on digital banking security, and past cases of data leaks in local fintech firms highlight the risks of insufficient controls. While frameworks like HIPAA and GDPR serve as global references, the Indonesian context shows how vulnerability management remains central, requiring organizations to balance innovation with secure environments. The need to continuously monitor, detect, and address security flaws during development is vital. Automated tools that embed security checks into DevOps pipelines are becoming indispensable to mitigate risks and fulfill compliance obligations (Ramaj et al., 2022; Tatineni, 2023). Equally important is the cultivation of a culture of compliance among development teams. Awareness and understanding of regulatory requirements enhance accountability and ensure that development practices align with legal expectations throughout the software lifecycle.

A major factor shaping DevOps feasibility in Southeast Asia is data sovereignty. Organizations frequently hesitate to adopt cloud services due to concerns about data privacy and foreign jurisdiction over cloud hosted information (Ali et al., 2016). The risk that sensitive data may fall under extraterritorial legal authority prompts significant apprehension, especially in sectors handling sensitive personal or financial data. In response, governments across the region are implementing domestic data localization mandates, compelling organizations to prioritize local storage and processing solutions (Blancato, 2023). This legislative momentum has pushed companies to seek cloud providers that offer domestic data residency, directly impacting their cloud and DevOps strategies. Localized infrastructure thus becomes a foundational element in secure and compliant software delivery.

Indonesia's banking and healthcare sectors have shown varying degrees of DevOps adoption, largely shaped by their respective regulatory constraints. In banking, the demand for rapid innovation and superior customer experience has driven the adoption of DevOps practices aimed at enhancing agility and operational efficiency (Ali et al., 2016). Meanwhile, healthcare institutions remain cautious due to the sensitivity of patient data and legal obligations surrounding privacy. Nevertheless, early adopters have demonstrated that DevOps can bring operational benefits and facilitate faster application cycles, ultimately improving patient outcomes (Ramaj et al., 2022; Tatineni, 2023).

Digital transformation in emerging markets like Indonesia is multifaceted, often progressing unevenly across industries. While sectors such as telecommunications and retail tend to embrace innovation more rapidly, highly regulated fields prioritize compliance and risk management (Ali et

Sucipto

al., 2016, p. 2). The integration of advanced technologies such as DevOps in these contexts must therefore be strategic and carefully aligned with legal requirements. The balance between technological advancement and compliance is delicate, particularly as organizations seek to harness the efficiency and scalability offered by digital solutions without incurring regulatory penalties.

Local cloud infrastructure plays a pivotal role in supporting the secure delivery of software services. Hosting applications and data within local data centers not only improves system performance by reducing latency but also enhances legal compliance by keeping data within national borders (Ibrahim, 2024). The risk of unauthorized access or foreign surveillance is mitigated when data remains under the jurisdiction of domestic laws. Furthermore, local cloud providers are better positioned to understand and accommodate national compliance demands, offering tailored services that align with regulatory expectations (Mohlameane & Ruxwana, 2020). In this way, localized infrastructure serves as both a technical and regulatory enabler of DevOps.

To facilitate DevOps under compliance constraints, international governance frameworks provide structured approaches to integrate risk management into development practices. Standards such as ISO/IEC 27001 and the NIST Cybersecurity Framework guide organizations in embedding security and compliance within agile workflows (Ramaj et al., 2022). These models ensure that organizations remain audit ready and responsive to evolving regulatory requirements, allowing them to innovate without sacrificing accountability. By institutionalizing compliance processes, organizations can scale DevOps while maintaining trust, reliability, and legal integrity.

In summary, the implementation of DevOps in Indonesia's regulated sectors is shaped by a confluence of factors: the complexity of compliance, the imperatives of data sovereignty, and the strategic deployment of local cloud infrastructure. The growing emphasis on governance frameworks underscores the need for structured and sustainable approaches to digital transformation. As Indonesia continues to expand its cloud capabilities and refine its regulatory landscape, it stands at the forefront of emerging economies that are reconciling agility with compliance. This study thus contributes to a deeper understanding of how infrastructure and regulation intersect to shape the future of DevOps in regulated environments.

METHOD

This chapter outlines the methodological framework employed to investigate the influence of infrastructure localization on DevOps adoption within regulated sectors in Indonesia. Considering the complexity and variability of DevOps implementation particularly in highly regulated environments a qualitative case study approach was chosen as the most appropriate method.

Qualitative research methodologies are well suited to exploring nuanced interactions between organizational practices, regulatory frameworks, and technological innovation. Among these, case studies are particularly effective for in depth analysis of DevOps adoption within its organizational and regulatory context (Erich et al., 2017; Lwakatare et al., 2019). This research utilizes a dual case

Infrastructure Driven DevOps in Regulated Markets: A Case Study of Indonesia's Financial Sector

Sucipto

study method focusing on two Indonesian financial institutions: BCA and Bank Jago. The selection criteria were based on their contrasting approaches to infrastructure readiness and DevOps maturity. BCA represents a legacy institution undergoing structured digital transformation, while Bank Jago exemplifies a cloud native approach with rapid CI/CD deployment.

To develop these cases, multiple data sources were used, including corporate blogs, white papers, infrastructure provider announcements, DevOps case reports, and regulatory policy documents. The data were triangulated to ensure credibility and depth. The study did not involve interviews but relied on publicly available institutional and technical documentation.

The analytical framework incorporates both organizational and regulatory dimensions. From an organizational perspective, the study examines the cultural and technical shifts necessary for DevOps integration, including leadership commitment, platform engineering, and toolchain modernization (Muñoz & Negrete, 2021; Nagarajan & Overbeek, 2018). These aspects were used to assess each institution's DevOps maturity, operational efficiency, and time to deployment. From a regulatory standpoint, the analysis is grounded in compliance standards such as ISO/IEC 27001, PCI DSS, and the NIST Cybersecurity Framework (Jabbari et al., 2018). These standards inform the evaluation of data sovereignty, auditability, and security practices within each organization's DevOps lifecycle.

Each case was structured to highlight: (1) the institution's DevOps adoption strategy, (2) the role of infrastructure localization in enabling this strategy, (3) the technical tools used, and (4) the outcomes achieved in terms of CI/CD readiness and compliance enablement. This systematic structure allows for comparison across institutions and identification of patterns relevant to other regulated sectors.

In addition to descriptive analysis, the study applied a thematic coding approach to extract recurring challenges and enablers from the source materials. These themes include infrastructure availability, leadership alignment, data localization, platform engineering, and regulatory responsiveness. The thematic findings were then mapped against a DevOps readiness model inspired by existing maturity models (Rafi et al., 2020).

Overall, the methodological approach combines qualitative depth with regulatory precision, providing a robust basis for evaluating how infrastructure influences DevOps in high compliance environments. By focusing on real world institutional examples within a specific national context, the study delivers insights with both theoretical and practical significance for digital transformation in regulated sectors.

RESULT AND DISCUSSION

Cloud Infrastructure Availability

Indonesia's cloud landscape has rapidly evolved, influenced by national digital strategies and foreign investments. Major providers such as Google Cloud, AWS, and Microsoft Azure have either launched or announced regional cloud zones to support Indonesia's stringent data sovereignty requirements (Ali et al., 2020). For example, Google Cloud and AWS are investing in Jakarta based data centers to enable local processing capabilities and regulatory compliance (Silva et al., 2018).

Table 1. Cloud Infrastructure Availability in Indonesia

Provider	Region	Go Live Date
Google Cloud	Jakarta	June 2020
AWS	ap southeast 3 (Jakarta)	December 2021
Microsoft Azure	Indonesia Central	May 2025

Table 1 presents the availability of cloud infrastructure in Indonesia. Beyond the technical details, these investments have practical effects: for example, banks can now run fraud detection systems with faster response times, while hospitals can securely process patient records within domestic data centers. Such local infrastructure not only reduces latency but also ensures that sensitive data, especially in finance and healthcare, remains under Indonesia's jurisdiction. This alignment directly strengthens service responsiveness and simplifies compliance with laws such as the PDPA

DevOps Implementation Cases

BCA (Bank Central Asia)

BCA utilizes Red Hat OpenShift to manage containerized workloads, ensuring agility while preserving security and compliance (Ali et al., 2020). Integration with Jenkins enables automated CI/CD pipelines, allowing for rapid software iteration without compromising control. BCA's strategy demonstrates how traditional financial institutions can modernize incrementally by leveraging enterprise grade DevOps platforms.

Bank Jago

Bank Jago has adopted an agile, cloud native model. Utilizing GitLab, Jenkins, and Terraform, the bank achieves infrastructure as code and scalable DevOps processes. Its use of cloud native services enables quick provisioning and flexible scaling aligned with innovation goals (Ali et al., 2020). CI/CD pipelines were operational within days, a significant contrast to legacy banking environments.

Table 2. DevOps Readiness in Indonesian Financial Sector

Institution	Strategy		Tools		Time	to	CI/CD
					Readine	ss	
BCA	OpenShift	based	OpenShift, Jenkins		Ongoing		
	DevOps						
Bank Jago	Infrastructure	first	GitLab,	Jenkins,	Days		
	CI/CD		Terraform				

These examples confirm the role of modern infrastructure and automation tools in enabling rapid DevOps deployment while maintaining sectoral compliance.

Compliance vs Innovation Trade offs

Local cloud infrastructure directly supports data localization policies, simplifying audits and ensuring legal alignment for highly regulated sectors (Ali et al., 2020). However, while this ensures security, it may restrict the adoption of global services and hinder service integration.

DevOps introduces risks particularly when rapid deployment bypasses compliance protocols (Ali et al., 2016). Complex multi cloud environments can further obscure visibility, raising concerns about data flow and access control (Ali et al., 2020). Organizations must implement robust governance frameworks to ensure that speed does not come at the expense of control.

Table 3. Compliance Innovation Trade offs in Local Cloud Use

Factor	Benefit with Local Cloud	DevOps Impact			
Data locality	Meets government compliance	Enables secure DevOps practices			
Reduced latency	Faster customer response	customer response Improves CI/CD feedback loop			
	times				
Audit trail	Easier regulatory reporting	Simplifies deployment			
availability		accountability			

Sandbox environments allow experimentation without impacting production systems. This facilitates controlled innovation and enhances regulatory preparedness (Ali et al., 2016; 2020). Cross functional DevOps teams integrating developers, operations staff, and compliance officers are key to maintaining security and innovation balance.

Automation of compliance checks within CI/CD pipelines further supports this integration, making regulatory adherence part of the DevOps lifecycle (Mohlameane & Ruxwana, 2020). Frameworks like ISO/IEC 27001 serve as benchmarks for embedding compliance into agile workflows (Ali et al., 2016).

These findings underscore the need for regulated industries to adopt hybrid strategies that leverage infrastructure, automation, and governance to sustain innovation while meeting legal obligations.

Global Parallels in DevOps Under Compliance Among Emerging Markets

The findings align with broader global transformations in regulated sectors across emerging markets. For example, Brazil's implementation of the LGPD has pushed banks to adopt DevOps practices with embedded privacy checks, while Indian hospitals increasingly rely on DevSecOps to comply with data protection norms. Indonesia's experience mirrors these trends, as its banking and healthcare institutions adopt DevOps while ensuring compliance with the Personal Data Protection Act and OJK regulations. In these countries, digital transformation is tightly coupled with rising cloud adoption, spurred by state level policies and infrastructure localization strategies (D. Kumar et al., 2017; Rodrigues et al., 2022).

Across these nations, DevOps has become a strategic imperative. It is no longer simply a tool for improving software delivery speed or increasing development productivity; rather, it is integral to maintaining organizational relevance amid shifting regulatory landscapes. In Brazil, regulatory mandates such as the LGPD require institutions to uphold data privacy and security even as they accelerate innovation. Similarly, Indian enterprises prioritize delivery metrics and DevSecOps to gain competitive advantages in a fast evolving IT environment (D. Kumar et al., 2017).

Cultural dimensions further shape how DevOps is adopted. In India, rapid iteration cycles are encouraged through performance based DevOps metrics, aligning well with the intense market competition and tech centric business culture. Brazilian firms, on the other hand, tend to focus more on aligning DevOps with consumer responsiveness under strict data regulation regimes. Indonesia reflects a fusion of these models: it balances state led regulatory initiatives, like the Personal Data Protection Act, with increasing demand from the private sector for agile innovation. The Indonesian government's incentives, public private partnerships, and digital infrastructure projects such as the "100 Smart Cities" program serve as accelerators for DevOps enabling cloud investments (Silva et al., 2018).

Long term Risks of Cloud Vendor Lock In

While infrastructure expansion has catalyzed DevOps adoption, long term strategic risks persist particularly cloud vendor lock in. Relying too heavily on a single cloud provider exposes institutions to escalating costs, inflexible architecture, and decreased leverage during contract negotiations. This is especially dangerous in regulated sectors, where changes in compliance laws could force rapid adaptation something not easily achieved when tied to proprietary services or platforms (Opara-Martins, 2018; Schork et al., 2019).

Moreover, institutions locked into exclusive ecosystems may find it increasingly difficult to innovate or migrate workloads, risking stagnation and technological obsolescence. The risk of data migration issues and disruption to audit trails amplifies these challenges, particularly under mandates that demand secure, traceable data handling (Wang et al., 2020).

To address this, architectural resilience must be built from the outset. Multi cloud and hybrid cloud strategies offer more than just operational flexibility they provide regulatory adaptability. Embracing open standards and container orchestration platforms allows institutions to pivot between vendors, preserving both control and compliance. Notably, some Indonesian institutions

Sucipto

are beginning to experiment with these approaches, showcasing early signs of resilience and independence from rigid infrastructure models (Opara-Martins et al., 2016).

Platform Engineering and Regulatory Alignment in DevOps

Platform engineering plays an increasingly central role in ensuring that DevOps practices are both scalable and compliant. Rather than decentralizing compliance as an external concern, platform engineering embeds governance policies directly into the development environment. Internal developer platforms designed with built in security policies, access control, and audit trails enable teams to move quickly without risking non compliance (Sedlar & Tjernström, 2017).

Automating compliance through "Compliance as Code" practices allows organizations to codify controls and embed regulatory logic into CI/CD pipelines. This reduces the burden of manual auditing while simultaneously increasing the consistency and traceability of compliance related actions (Hossny et al., 2021). These capabilities are critical for sectors like healthcare and finance, where software deployment is often subject to continuous regulatory review.

Additionally, platform engineering encourages the use of reusable architectural patterns, minimizing inconsistencies across teams and ensuring that best practices are applied organization wide. The incorporation of monitoring, alerting, and observability tools also enhances an institution's readiness to respond to evolving legal or technical requirements.

Recommended Policy Changes for Supporting DevOps Maturity

Although internal strategies are essential, policy infrastructure must also evolve. Governments need to establish clearer, standardized frameworks for cloud compliance, particularly in multi jurisdictional settings. These frameworks should not only address technical standards but also outline procedural requirements and liabilities for service providers and regulated clients alike (P. Kumar & Mala, 2022).

Incentivizing the development of open, interoperable cloud services can reduce dependency on dominant providers and stimulate innovation. Policies promoting portability and data sovereignty friendly architectures will empower institutions to shift between providers as needed without facing massive reengineering costs or compliance disruptions (Schork et al., 2019).

Government agencies should also expand collaborative efforts with private industry, academia, and cloud service providers. Through such cooperation, adaptive regulatory frameworks can be developed that evolve alongside emerging technologies. These partnerships can also serve as testbeds for experimental governance models that streamline compliance without impeding delivery agility.

Workforce Enablement for Compliance Driven DevOps

A resilient and future ready DevOps workforce is vital to ensuring that organizations can navigate the complexities of regulated environments. Skills development programs focusing on cloud security, infrastructure as code, CI/CD, and compliance aware design principles must be prioritized. By equipping developers and IT professionals with the knowledge to build and operate within secure, compliant systems, organizations can bridge the operational gap between innovation and governance (Silva et al., 2018).

In addition to technical training, interdisciplinary education that incorporates legal, regulatory, and ethical dimensions is also needed. This cross functional literacy will enable organizations to form DevOps teams that include not only engineers but also compliance officers and legal advisors, fostering a culture of built in governance.

Public sector support is also necessary scholarships, training incentives, and government subsidized upskilling programs can play an instrumental role in cultivating talent pools that align with national digital transformation agendas.

CONCLUSION

This study demonstrates how infrastructure localization plays a central role in enabling DevOps adoption in Indonesia's regulated sectors. The comparative cases of BCA and Bank Jago reveal that both enterprise-level platform engineering and cloud-native approaches can successfully balance innovation with compliance when supported by local cloud infrastructure. The availability of domestic data centers not only reduces latency but also strengthens data sovereignty, thereby ensuring that DevOps practices remain aligned with national regulations such as the PDPA.

At the same time, the findings highlight that sustainable DevOps maturity requires more than technical readiness. Embedding governance into development processes through platform engineering, multi-cloud strategies, and Compliance as Code is essential to mitigate vendor lockin and regulatory risks. Equally important is workforce enablement and supportive policy frameworks, which together ensure that Indonesia's hybrid DevOps model can continue to evolve as a blueprint for other emerging markets navigating similar compliance-heavy environments.

REFERENCE

- Ali, O., Shrestha, A., Osmanaj, V., & Muhammed, S. (2020). Cloud Computing Technology Adoption: An Evaluation of Key Factors in Local Governments. Information Technology and People, 34(2), 666–703. https://doi.org/10.1108/itp-03-2019-0119
- Ali, O., Soar, J., Yong, J., & Tao, X. (2016). Factors to Be Considered in Cloud Computing Adoption. Web Intelligence, 14(4), 309–323. https://doi.org/10.3233/web-160347
- Blancato, F. G. (2023). The Cloud Sovereignty Nexus: How the European Union Seeks to Reverse Strategic Dependencies in Its Digital Ecosystem. Policy & Internet, 16(1), 12–32. https://doi.org/10.1002/poi3.358
- Erich, F., Amrit, C., & Daneva, M. (2017). A Qualitative Study of DevOps Usage in Practice. Journal of Software Evolution and Process, 29(6). https://doi.org/10.1002/smr.1885

- Hossny, E., Khattab, S., Omara, F. A., & Hassan, H. (2021). STAGER: Semantic-Based Framework for Generating Adapters of Service-Based Generic-Api for Portable Cloud Applications. Ieee Transactions on Services Computing, 14(3), 903–914. https://doi.org/10.1109/tsc.2018.2831204
- Ibrahim, O. M. (2024). Impact of Cloud Computing on Business Continuity and Disaster Recovery. Journal of Technology and Systems, 6(5), 16–28. https://doi.org/10.47941/jts.2146
- Jabbari, R., Ali, N. b., Petersen, K., & Tanveer, B. (2018). Towards a Benefits Dependency Network for DevOps Based on a Systematic Literature Review. Journal of Software Evolution and Process, 30(11). https://doi.org/10.1002/smr.1957
- Khayer, A., Bao, Y., & Nguyen, B. (2020). Understanding Cloud Computing Success and Its Impact on Firm Performance: An Integrated Approach. Industrial Management & Data Systems, 120(5), 963–985. https://doi.org/10.1108/imds-06-2019-0327
- Kumar, D., Samalia, H. V., & Verma, P. C. (2017). Exploring Suitability of Cloud Computing for Small and Medium-Sized Enterprises in India. Journal of Small Business and Enterprise Development, 24(4), 814–832. https://doi.org/10.1108/jsbed-01-2017-0002
- Kumar, P., & Mala, G. S. A. (2022). H2RUN: An Efficient Vendor Lock-in Solution for Multicloud Environment Using Horse Herd Runge Kutta Based Data Placement Optimization. Transactions on Emerging Telecommunications Technologies, 33(9). https://doi.org/10.1002/ett.4541
- Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., Kuvaja, P., Mikkonen, T., Oivo, M., & Lassenius, C. (2019). DevOps in Practice: A Multiple Case Study of Five Companies. Information and Software Technology, 114, 217–230. https://doi.org/10.1016/j.infsof.2019.06.010
- Mohlameane, M., & Ruxwana, N. (2020). Exploring the Impact of Cloud Computing on Existing South African Regulatory Frameworks. Sa Journal of Information Management, 22(1). https://doi.org/10.4102/sajim.v22i1.1132
- Muñoz, M., & Negrete, M. (2021). A Guidance to Implement or Reinforce a DevOps Approach in Organizations: A Case Study. Journal of Software Evolution and Process, 36(3). https://doi.org/10.1002/smr.2342
- Nagarajan, A. D., & Overbeek, S. (2018). A DevOps Implementation Framework for Large Agile-Based Financial Organizations. 172–188. https://doi.org/10.1007/978-3-030-02610-3_10
- Opara-Martins, J. (2018). Taxonomy of Cloud Lock-in Challenges. https://doi.org/10.5772/intechopen.74459

- Opara-Martins, J., Sahandi, R., & Tian, F. (2016). Critical Analysis of Vendor Lock-in and Its Impact on Cloud Computing Migration: A Business Perspective. Journal of Cloud Computing Advances Systems and Applications, 5(1). https://doi.org/10.1186/s13677-016-0054-z
- Rafi, S., Wu, Y., Akbar, M. A., Mahmood, S., Alsanad, A., & Gumaei, A. (2020). Readiness Model for DevOps Implementation in Software Organizations. Journal of Software Evolution and Process, 33(4). https://doi.org/10.1002/smr.2323
- Ramaj, X., Sánchez-Gordón, M., Gkioulos, V., Chockalingam, S., & Colomo-Palacios, R. (2022). Holding on to Compliance While Adopting DevSecOps: An SLR. Electronics, 11(22), 3707. https://doi.org/10.3390/electronics11223707
- Rodrigues, P., Freitas, F., & Simão, J. (2022). QuickFaaS: Providing Portability and Interoperability Between FaaS Platforms. Future Internet, 14(12), 360. https://doi.org/10.3390/fi14120360
- Schork, S., Zahid, F., Pradhan, D., Kicin, S., & Schwichtenberg, A. (2019). Building an Open-Source Cross-Cloud DevOps Stack for a CRM Enterprise Application: A Case Study. 3–11. https://doi.org/10.1007/978-3-030-20883-7_1
- Sedlar, J., & Tjernström, M. (2017). Clouds, Warm Air, and a Climate Cooling Signal Over the Summer Arctic. Geophysical Research Letters, 44(2), 1095–1103. https://doi.org/10.1002/2016gl071959
- Silva, B., Matos, R., Tavares, E., Maciel, P., & Zimmermann, A. (2018). Sensitivity Analysis of an Availability Model for Disaster Tolerant Cloud Computing System. International Journal of Network Management, 28(6). https://doi.org/10.1002/nem.2040
- Tatineni, S. (2023). Compliance and Audit Challenges in DevOps: A Security Perspective. International Research Journal of Modernization in Engineering Technology and Science. https://doi.org/10.56726/irjmets45309
- Wang, P., Zhao, C., Liu, W., Chen, Z., & Zhang, Z. (2020). Optimizing Data Placement for Cost Effective and High Available Multi-Cloud Storage. Computing and Informatics, 39(1–2), 51–82. https://doi.org/10.31577/cai_2020_1-2_51