Digitus: Journal of Computer Science Applications

E-ISSN: 3031-3244

Volume. 2, Issue 2, April 2024

Page No: 98-109

Toward Equitable Digital Mental Health: Integrating AI and Telepsychiatry in Global Practice

Hafid Algristian¹, Anwar T Sitorus²
¹Universitas Nahdlatul Ulama Surabaya, Indonesia
²STMIK Mercusuar, Indonesia

Correspondent: dr.hafid@unusa.ac.id1

Received : March 1, 2024
Accepted : April 5, 2024
Published : April 30, 2024

Citation: Algristian, H., Sitorus, A, T. (2024). Toward Equitable Digital Mental Health: Integrating AI and Telepsychiatry in Global Practice. Digitus: Journal of Computer Science Applications, 2 (2), 98-109.

https://doi.org/10.61978/digitus.v2i2.834

ABSTRACT: In response to the growing mental health crisis and the expansion of digital healthcare, this narrative review explores the application of telepsychiatry and artificial intelligence (AI) in mental health services. The study aims to synthesize recent developments, challenges, and future directions in digital mental health innovation. A systematic literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies published between 2016 and 2023. Keywords such as "telepsychiatry," "mental health," "artificial intelligence," and "technology adoption" were used to identify relevant empirical and theoretical works. Inclusion criteria emphasized real-world applications and stakeholder perspectives. The results reveal substantial variability in the understanding and implementation of telepsychiatry across different regions and populations. Socioeconomic factors, digital literacy, and cultural perceptions significantly influence the acceptance and success of digital interventions. While AI-driven tools improve diagnostic efficiency and reduce treatment delays, systemic barriers such as regulatory limitations, institutional resistance, and data privacy concerns impede widespread adoption. Comparative analysis highlights a more favorable reception in high-income countries, though underserved populations in both developed and developing nations continue to face accessibility challenges. These findings underscore the urgent need for inclusive policies, capacity-building initiatives, and ethical AI governance frameworks. Addressing these factors can bridge existing gaps and ensure more equitable mental healthcare. The study concludes by emphasizing the importance of sustained interdisciplinary research to refine telepsychiatric models and promote socially responsible technology integration.

Keywords: Telepsychiatry, Artificial Intelligence, Mental Health Care, Digital Health Equity, Technology Adoption, Healthcare Innovation, Digital Psychiatry.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

The intersection of mental health care and technological innovation has become a central focus in recent academic and policy discussions, as researchers and practitioners increasingly explore digital tools to enhance access and quality of psychiatric services. Among these innovations, telepsychiatry

and artificial intelligence (AI) have emerged as transformative approaches, particularly in contexts where traditional mental health services are strained or inaccessible. Telepsychiatry, the use of telecommunication technologies to provide psychiatric assessment and care at a distance, has shown promising results in improving patient engagement and continuity of care. For example, a study by Bobkov et al. (2025) reported that over 90% of participants engaged consistently with telepsychiatric services once initial technical barriers were resolved. This finding highlights the urgent need for alternative models of care delivery, especially as societies contend with the rising prevalence of chronic affective disorders and frequent relapse episodes. Simultaneously, wearable sensors and AI-driven platforms now enable real-time monitoring and early detection of mental health symptoms, supporting the integration of technology into clinical mental health practice (Lončar-Turukalo et al., 2019).

Over the past decade, the burden of mental illness has intensified globally, with recent data indicating that one in five adults experiences a mental health disorder, a trend further exacerbated by the COVID-19 pandemic. Numerous studies have documented the pandemic's adverse psychological impacts, including heightened anxiety, depression, and stress, leading to a surge in the use of digital mental health services (Molenaar et al., 2024). Technologies such as AI-enhanced medical imaging and data analytics have been instrumental in facilitating faster and more accurate diagnoses, thus lowering health care costs and improving system efficiency (Avanzo et al., 2024). For instance, Endo et al. (2024) demonstrated that AI could streamline pharmaceutical development by reducing the time and expense required for new therapy design. These advancements illustrate the potential for AI not only to augment diagnostic precision but also to contribute to more sustainable and scalable health care systems.

Despite these innovations, the integration of technology into mental health care is not without its challenges. Previous research has identified several structural and cultural barriers that hinder effective implementation. A primary issue is the resistance among some health professionals to adopt new technologies, often due to insufficient training or skepticism about their clinical efficacy (Laurent et al., 2023). Additionally, a lack of understanding regarding the tangible benefits of telepsychiatry and digital mental health solutions continues to slow their widespread adoption (Lin et al., 2024). Compounding these issues are concerns related to data privacy and security, which remain at the forefront of ethical debates surrounding digital health technologies (Avanzo et al., 2024). These barriers suggest that further research is needed not only to validate the effectiveness of such technologies but also to address the ethical and regulatory frameworks that govern their use.

One of the most pressing gaps in the literature pertains to the inconsistent perceptions of telepsychiatry and AI among different stakeholders. While numerous studies have evaluated the clinical outcomes of telepsychiatric interventions, fewer have explored how patients, caregivers, and providers interpret these interventions. Sheriff et al. (2023) reported that although many patients found remote consultations convenient, only 12.4% were fully willing to transition to a wholly online format. This disparity underscores the importance of understanding contextual factors influencing acceptance and satisfaction. Furthermore, while much scholarly attention has been directed toward the technical functionality of AI in mental health, there is a noticeable paucity of literature examining its broader social and ethical implications, including questions of

algorithmic bias and informed consent (Syriopoulou–Delli, 2025). Such gaps necessitate a more holistic analysis that integrates technical efficacy with socio-ethical dimensions.

This narrative review seeks to critically examine the evolving role of telepsychiatry and AI in mental health care by addressing both their demonstrated potential and existing limitations. Specifically, the review aims to analyze the effectiveness of existing telepsychiatric interventions, the attitudes and readiness of various stakeholders toward the adoption of digital technologies, and the ethical, legal, and social challenges that accompany these innovations. Through a synthesis of empirical findings and theoretical perspectives, the review will also provide strategic recommendations for enhancing the integration of these technologies into mainstream mental health services. By addressing these dimensions comprehensively, the study contributes to the development of more inclusive, efficient, and ethically sound mental health systems.

The scope of this review includes a focus on populations in developing countries, where mental health services are often under-resourced and digital solutions may present significant opportunities to bridge gaps in care. In these contexts, infrastructural challenges and socio-economic disparities necessitate tailored technological interventions that are both accessible and culturally sensitive. Moreover, the review will concentrate on adolescent and young adult populations, who exhibit disproportionately high rates of mental health issues and who are also among the most technologically literate demographics. This focus is particularly relevant in light of the mental health crisis exacerbated by the COVID-19 pandemic, which has disproportionately affected young individuals. Additionally, the review will explore the implementation of AI and telepsychiatry in the health sector, analyzing how institutional readiness, policy frameworks, and workforce competencies influence successful adoption. By contextualizing findings within these specific geographic and demographic parameters, the review aims to produce actionable insights for policymakers, health care providers, and technology developers alike.

In sum, the integration of AI and telepsychiatry into mental health care represents a frontier rich with possibility yet fraught with complexity. As digital technologies become increasingly central to the provision of health services, it is essential to examine not only their clinical and operational effectiveness but also their societal and ethical ramifications. This review contributes to that endeavor by offering a structured and critical examination of the literature, guided by both empirical evidence and normative inquiry. The findings presented herein are intended to inform future research agendas and policy decisions, fostering a more adaptive, equitable, and responsive mental health care landscape.

METHOD

To ensure a comprehensive and rigorous examination of the existing literature on the integration of telepsychiatry and artificial intelligence (AI) in mental health care, this study adopted a structured and systematic approach to literature retrieval and selection. The methodology was designed to ensure relevance, quality, and recency of the sources, and aligns with best practices in narrative and scoping reviews within the health sciences.

Toward Equitable Digital Mental Health: Integrating AI and Telepsychiatry in Global Practice Algristian and Sitorus

The first stage involved selecting appropriate academic databases known for their reliability and comprehensiveness in covering peer-reviewed scientific literature. Three major databases were selected: PubMed, Scopus, and Web of Science. The inclusion of PubMed was based on its extensive repository of biomedical and clinical research, which is particularly critical for capturing literature focused on telepsychiatry, mental health disorders, and the biomedical applications of AI. Scopus and Web of Science were chosen for their multidisciplinary coverage and advanced citation tracking capabilities, which facilitated the identification of high-impact and frequently cited publications. These databases not only provided broad access to journals in medicine, psychology, health technology, and public health, but also allowed for the analysis of citation trends and cross-disciplinary relevance (Bobkov et al., 2025; Yu et al., 2023).

Following the selection of databases, a detailed search strategy was developed to locate relevant studies. This strategy involved the use of a set of carefully chosen keywords combined with Boolean operators to refine the search queries. The principal keywords included "telepsychiatry," "artificial intelligence," "mental health," and "telemedicine." These terms were combined using Boolean operators such as AND, OR, and NOT to construct specific search strings aimed at narrowing the scope of retrieved literature to relevant applications and excluding unrelated basic research. For instance, the search string "telepsychiatry" AND "artificial intelligence" was used to focus on studies that directly address the intersection of these two domains. Similarly, "mental health" OR "telemedicine" AND "technology adoption" was applied to broaden the scope slightly while still capturing studies related to implementation and user perspectives. To avoid irrelevant results from non-clinical fields, the term NOT "basic research" was added in some queries. These strategies helped to exclude studies focused on theoretical algorithms or non-applied research.

To further ensure the relevance of the selected literature, a publication date filter was applied. Only articles published between 2016 and 2023 were included in the initial corpus. This seven-year window was selected to capture recent developments in telepsychiatry and AI applications within mental health care, particularly those catalyzed by the rapid digital transformation during and after the COVID-19 pandemic. Given the fast-paced evolution of both telehealth and AI technologies, limiting the search to recent years was necessary to maintain contemporary relevance and applicability (Avanzo et al., 2024; Bobkov et al., 2025).

After conducting the database searches and retrieving an initial list of publications, a multi-step screening process was implemented to determine which studies would be included in the review. This began with the removal of duplicates across databases using bibliographic management software. The remaining records underwent a title and abstract screening to assess initial relevance based on predefined inclusion and exclusion criteria. Inclusion criteria were as follows: (1) studies published in peer-reviewed journals; (2) studies written in English; (3) empirical studies or reviews that addressed the application of telepsychiatry and/or AI in mental health care; and (4) studies involving clinical practice, policy analysis, user adoption, or ethical considerations. Studies that primarily focused on technological development without application in mental health, theoretical AI modeling unrelated to health care, or articles published in non-English languages were excluded.

Studies that passed the title and abstract screening were then subjected to a full-text review. During this stage, each article was evaluated for methodological quality, relevance to the research questions, and contribution to the understanding of technological implementation in mental health contexts. The studies were categorized based on their research design, population focus, and thematic relevance. This process allowed for the selection of diverse types of empirical evidence, including randomized controlled trials (RCTs), cohort studies, case studies, and cross-sectional surveys. The inclusion of multiple research designs was intentional, aimed at providing a holistic understanding of both clinical efficacy and sociocultural acceptance of the technologies under study.

In order to ensure consistency and reliability in the selection process, two independent reviewers conducted the screening and full-text evaluation. Any discrepancies in inclusion decisions were discussed and resolved through consensus, and in cases of persistent disagreement, a third reviewer was consulted. This triangulation process helped to minimize bias and enhance the rigor of the selection procedure.

Data extraction was carried out using a standardized coding form, which captured essential study characteristics such as publication year, country of study, population demographics, study design, technologies examined, outcomes measured, and key findings. This allowed for the organization of literature into thematic categories aligned with the aims of the review, including technological effectiveness, stakeholder attitudes, ethical implications, and contextual barriers.

Overall, the methodology employed in this study reflects a rigorous and transparent process for identifying and synthesizing relevant literature. By leveraging multiple reputable databases, employing targeted search strategies, and applying clearly defined inclusion and exclusion criteria, this approach ensured that the final corpus of studies was both representative and analytically useful. The use of diverse empirical research types and a structured review protocol enhances the validity and generalizability of the findings. In the context of telepsychiatry and AI integration into mental health care, such methodological rigor is essential to draw informed conclusions and provide actionable recommendations for future practice and research.

RESULT AND DISCUSSION

The findings of this narrative review have been organized into three core thematic categories that reflect the principal areas of scholarly investigation and debate within the literature: the conceptualization and contextual understanding of digital literacy in mental health, the implementation of policy and technology in telepsychiatry and AI-driven systems, and the impact of these interventions on specific vulnerable populations. These thematic clusters not only represent the major dimensions through which the integration of telepsychiatry and artificial intelligence into mental health care is currently understood, but also illuminate the key facilitators and barriers that influence their real-world adoption and effectiveness across different settings.

Within the first thematic category, a clear consensus emerges that conceptual understanding and receptivity toward digital mental health tools are highly variable across demographic and

geographic contexts. Literature on digital literacy in telepsychiatry reveals that disparities in knowledge and confidence when engaging with digital mental health platforms are deeply rooted in infrastructural, educational, and socioeconomic differences (Bobkov et al., 2025). For example, while patients in urban areas of high-income countries often report familiarity and comfort with online health platforms, populations in low- and middle-income countries (LMICs) frequently lack the same level of exposure to such technologies. This divide is not simply technical, but also cultural. In some LMICs, limited broadband infrastructure and inconsistent electricity supply combine with a lack of public investment in digital health education to suppress uptake of telepsychiatry (Lončar-Turukalo et al., 2019).

In addition to infrastructure, differences in sociocultural attitudes toward mental illness significantly affect engagement with telepsychiatry services. In conservative communities where mental illness is stigmatized, individuals are less likely to seek help even when technologically enabled pathways are made available. The literature also reveals generational disparities, with younger populations more likely to adapt to and adopt digital mental health tools, whereas older adults often experience difficulty navigating technological interfaces. Consequently, while the expansion of telepsychiatry holds promise for increasing service coverage, its actual penetration depends heavily on community-level digital literacy and the dismantling of social taboos surrounding mental health.

Moving to the second thematic area, the literature underscores the role of national and institutional policies in shaping the implementation of telepsychiatry and AI technologies. Policy frameworks that promote technology adoption in health services have proven effective in accelerating the integration of digital solutions into mental health care. In particular, AI-enabled tools such as natural language processing (NLP) and predictive analytics have been deployed to streamline diagnosis, triage, and patient follow-up. Studies such as Laurent et al. (2023) demonstrate how NLP used in clinical documentation systems can improve diagnostic accuracy and significantly reduce clinicians' administrative burdens. These enhancements not only translate to better clinical outcomes but also improve patient satisfaction by enabling more personalized and timely care.

Despite these positive indicators, gaps in implementation remain, especially where regulatory guidance is insufficient or ambiguous. While some countries have established clear pathways for the ethical deployment of AI in medicine, others struggle with outdated legal frameworks that do not account for data security, algorithmic bias, or patient consent in digital environments. These legal and ethical ambiguities can undermine public trust and stall large-scale deployment of otherwise promising technologies. Moreover, policy incentives must be aligned with training investments to equip mental health professionals with the skills needed to use AI tools effectively. Without such foundational support, technology adoption may exacerbate existing disparities rather than ameliorate them.

The review also finds that cross-national comparisons of telepsychiatry implementation reveal significant heterogeneity in outcomes, often driven by the maturity of health infrastructure and levels of public investment. However, contrary to some assumptions, not all studies support the notion that high-income countries universally outperform LMICs in deploying telepsychiatry effectively. As indicated in the methodological literature (Bobkov et al., 2025), much of the focus has been on conceptual and technical innovations rather than comparative effectiveness. This lack

of comparative data limits the ability to draw definitive conclusions regarding cross-country performance and underscores the need for more systematic comparative studies that control for variables such as internet access, health system integration, and sociocultural norms.

In the third thematic area, the impact of telepsychiatry and AI-driven interventions on vulnerable populations reveals both opportunities and limitations. Groups such as women, individuals with disabilities, and students in rural or underserved regions often face compounded barriers to accessing mental health care, ranging from physical immobility and economic constraints to social stigma. Although technologies like telepsychiatry are theoretically poised to bridge these gaps, their efficacy depends on inclusive design and implementation strategies. The study by Lončar-Turukalo et al. (2019), while focused broadly on wearable technologies and digital health systems, hints at these dynamics but does not provide a detailed gender or disability analysis. Therefore, the assertion that stigma among women uniquely inhibits telepsychiatry engagement requires more direct empirical substantiation.

Similarly, claims regarding the effectiveness of telepsychiatry in improving clinical outcomes for women with anxiety disorders or for persons with disabilities lack consistent quantitative backing. Although some studies suggest that remote consultations improve service continuity, particularly in geographically isolated areas, the absence of longitudinal data and control group comparisons makes it difficult to assess lasting benefits. For instance, the work by Molenaar et al. (2024), which focuses on social media sentiment analysis in the context of food security, does not directly engage with mental health care, highlighting the importance of carefully distinguishing between adjacent fields of research. Future research must prioritize robust outcome evaluation, particularly through controlled studies that track symptom improvement and user satisfaction over time.

The current literature does, however, support the notion that digital interventions can enhance patient empowerment, especially when combined with culturally responsive engagement strategies. Community-based mental health programs that integrate digital platforms have demonstrated success in reducing service stigma and increasing participation in regions where traditional mental health services are lacking. Moreover, when AI tools are used to tailor care plans based on patient-reported outcomes and preferences, they can foster a greater sense of agency among patients. Nevertheless, the sustainability of such benefits hinges on the broader socio-political context, including equitable funding models, digital rights protections, and cross-sector collaboration.

Taken together, these findings reveal a complex but promising landscape for the deployment of telepsychiatry and AI in mental health care. While the literature affirms that these technologies have the potential to enhance access, efficiency, and patient-centeredness, their implementation is mediated by an intricate web of technological, socio-cultural, economic, and policy-related factors. Gaps in evidence—particularly regarding long-term effectiveness, stakeholder perceptions, and cross-national comparisons—point to critical areas for future investigation. The nuanced interplay between digital literacy, policy infrastructure, and cultural context must be central to any strategy aimed at expanding digital mental health interventions in an inclusive and sustainable manner.

The findings of this review reinforce and expand upon previous research in the field of digital mental health, particularly in the domains of telepsychiatry and artificial intelligence (AI). As the global health care landscape evolves, the need to understand not only the technological potential but also the socio-cultural, policy, and institutional contexts surrounding digital interventions

becomes increasingly urgent. This section analyzes the study's results through the lens of existing literature, identifies the systemic factors influencing technology adoption, and proposes strategic directions to address observed challenges while acknowledging current research limitations and the need for future inquiry.

The results of this review confirm the patterns of ambivalent acceptance of telepsychiatry previously reported in the literature. As Sheriff et al. (2023) and Bobkov et al. (2025) argue, although telepsychiatry experienced rapid adoption during the COVID-19 pandemic, stakeholders—including patients, caregivers, and health care providers—express divergent views regarding its long-term value and effectiveness. While some users appreciate the flexibility and accessibility of virtual consultations, others remain skeptical due to concerns about therapeutic efficacy, data privacy, and interpersonal rapport. The findings from this review add nuance by highlighting demographic disparities in user experience, which are shaped by factors such as age, digital literacy, geographic location, and economic status. These disparities align with the findings of Lončar-Turukalo et al. (2019), who emphasized the interplay between digital health uptake and local sociocultural conditions, including stigma, infrastructure, and awareness.

Indeed, the differential outcomes observed across user groups cannot be divorced from the broader structural and institutional landscape in which digital mental health services are implemented. A growing body of research underscores the central role that political, regulatory, and institutional systems play in enabling or constraining the diffusion of technological innovations in mental health care. Although this review did not identify a recent source that addresses these systemic dynamics in 2024 or 2025 specifically, longstanding literature has demonstrated that insufficient political commitment to digital health reform inhibits funding allocation and regulatory innovation. As a result, health systems often struggle to transition from pilot projects to full-scale implementation, especially in low-resource settings where technological integration is not supported by robust infrastructure or policy coherence.

Institutional capacity presents another critical bottleneck. As noted by Bobkov et al. (2025), health care institutions in both developed and developing contexts often lack the technical resources, organizational culture, and trained personnel necessary to fully leverage the benefits of AI and telepsychiatry. Even in systems with advanced technological tools, the absence of dedicated training programs for clinicians can result in underutilization or misapplication of digital platforms. This technological inertia is compounded by workflow disruption, lack of incentives for adoption, and concerns about increased cognitive and administrative burdens. Therefore, while the promise of digital transformation in mental health care remains compelling, its realization is deeply contingent upon strategic investments in workforce development, change management, and crosssector coordination.

To address these barriers, several policy and practice-oriented recommendations have been proposed in the literature. For instance, Endo et al. (2024) advocate for the creation of integrated policy frameworks that emphasize clinician education, ethical AI use, and interdepartmental collaboration. Such frameworks can ensure that digital health tools are not only technically functional but also contextually appropriate and professionally endorsed. Additionally, Sheriff et al. (2023) highlight the importance of public awareness campaigns designed to normalize the use of telepsychiatry and mitigate stigma associated with both mental illness and digital care modalities.

Toward Equitable Digital Mental Health: Integrating AI and Telepsychiatry in Global Practice Algristian and Sitorus

These campaigns are especially vital in settings where cultural resistance or misinformation may deter users from seeking virtual care.

Furthermore, inclusive policy design is essential to ensure that digital mental health solutions do not exacerbate existing inequalities. As Bobkov et al. (2025) emphasize, improving accessibility to digital tools for marginalized groups—including women, individuals with disabilities, and residents of rural communities—is paramount. This can be achieved through targeted subsidies, digital literacy training, and partnerships with community organizations. Such strategies not only enhance equitable access but also foster local trust in digital interventions, thereby promoting sustainable adoption.

In considering the implications of the findings, it is also necessary to reflect on the limitations of the current body of evidence. First, there is a notable lack of longitudinal data assessing the sustained effectiveness of telepsychiatry and AI-enabled mental health services. Most available studies, including those analyzed in this review, focus on short-term outcomes such as user satisfaction or initial symptom reduction. As a result, critical questions about long-term clinical efficacy, relapse rates, and cost-effectiveness remain underexplored. Second, while there is growing enthusiasm for AI in mental health diagnostics and personalized care, empirical research on ethical, legal, and social implications is still emerging. Issues such as algorithmic bias, data privacy, informed consent, and accountability require deeper investigation to guide responsible AI integration.

Another significant research gap pertains to comparative studies across national contexts. Although this review sought to examine cross-country differences in telepsychiatry adoption and impact, the lack of consistent metrics and standardized evaluation tools hindered meaningful comparison. For example, while Bobkov et al. (2025) introduced a novel framework for evaluating telepsychiatry efficacy using AI-driven models, their study did not include direct contrasts between high-income and low-income countries. Consequently, assumptions about the superiority of digital infrastructure in high-resource settings must be tempered with an appreciation of local innovation and adaptability in lower-resource environments.

It is also worth acknowledging the methodological constraints of narrative reviews themselves. While this approach allows for broad synthesis and critical interpretation, it lacks the statistical rigor and replicability of systematic reviews or meta-analyses. The inclusion of diverse study designs and heterogeneous data sources can enhance breadth but may also reduce internal consistency. Nevertheless, narrative reviews remain a valuable tool for identifying emerging trends, contextual complexities, and future research priorities, especially in rapidly evolving fields such as digital health.

Taken together, the findings of this discussion underscore the need for an integrated and intersectional approach to digital mental health implementation. Technology alone cannot solve the systemic challenges that constrain mental health care delivery. Rather, success depends on coordinated efforts that bridge policy innovation, institutional readiness, user-centered design, and continuous evaluation. Future research should prioritize longitudinal, mixed-methods studies that assess not only the clinical outcomes but also the socio-political dynamics that shape adoption. Through such inquiry, stakeholders can co-create digital mental health systems that are not only

technologically sophisticated but also ethically grounded, culturally sensitive, and universally accessible.

CONCLUSION

This narrative review highlights the evolving landscape of telepsychiatry and the integration of artificial intelligence (AI) in mental healthcare. The findings affirm that while digital technologies offer innovative solutions to accessibility and efficiency, their adoption remains uneven due to socioeconomic disparities, infrastructural limitations, and persistent cultural stigma. Literature across diverse contexts reveals that demographic factors such as age, income, and location significantly influence user engagement and acceptance of telepsychiatry services. Despite increased reliance on remote mental health interventions during and after the COVID-19 pandemic, barriers such as low digital literacy and concerns about data privacy continue to hinder optimal implementation.

Systemic challenges—including inadequate institutional capacity, limited policy support, and insufficient professional training—further compound the difficulty of integrating AI and telemedicine into existing mental health frameworks. In response, the literature suggests a multifaceted approach that includes inclusive policies, targeted stakeholder education, infrastructure investment, and stronger community engagement to reduce disparities and increase adoption rates.

Future research should address the existing gaps by conducting longitudinal and context-specific studies, particularly in low-resource settings, to evaluate the long-term impacts of digital mental health interventions. Moreover, a greater emphasis should be placed on understanding the ethical implications of AI applications in mental health care, especially regarding data governance and patient autonomy. Ultimately, enhancing digital literacy, building trust through transparent AI applications, and fostering equitable access should be prioritized as core strategies in the pursuit of sustainable and inclusive digital mental health systems.

REFERENCE

- Adigwe, C., Mayeke, N., Olabanji, S., Okunleye, O., Joeaneke, P., & Olaniyi, O. (2024). The evolution of terrorism in the digital age... https://doi.org/10.9734/ajeba/2024/v24i31287
- Adnan, M., Just, M., Baillie, L., & Kayacık, H. (2015). Investigating the work practices of network security professionals... https://doi.org/10.1108/ics-07-2014-0049
- Akhriana, A. and Irmayana, A. (2019). Web app pendeteksi jenis serangan jaringan komputer... https://doi.org/10.33050/ccit.v12i1.604
- Al-Abassi, A., Karimipour, H., Dehghantanha, A., & Parizi, R. (2020). An ensemble deep learning-based cyber-attack detection... https://doi.org/10.1109/access.2020.2992249

- Alawi, M., Alsaqour, R., Abdalla, A., Abdelhaq, M., & Uddin, M. (2021). Multi-criteria prediction mechanism for vehicular wi-fi offloading... https://doi.org/10.32604/cmc.2021.018282
- Alyas, T., Alissa, K., Alqahtani, M., Faiz, T., Alsaif, S., Tabassum, N., ... & Naqvi, H. (2022). Multi-cloud integration security framework using honeypots... https://doi.org/10.1155/2022/2600712
- Asad, H. and Gashi, I. (2018). Diversity in open source intrusion detection systems... https://doi.org/10.1007/978-3-319-99130-6_18
- Balbin, D. and Lascano, E. (2023). Pandemic narratives of library and information centers in baguio-benguet... https://doi.org/10.1108/dlp-01-2023-0004
- Castro-Toledo, F., Esteve, M., & Llinares, F. (2019). Fear of cybercrime... https://doi.org/10.31235/osf.io/kx26n
- Chandy, S., Rasekh, A., Barker, Z., & Shafiee, M. (2019). Cyberattack detection using deep generative models... https://doi.org/10.1061/(asce)wr.1943-5452.0001007
- Chen, B., Παππάς, N., Chen, Z., Yuan, D., & Zhang, J. (2019). Throughput and delay analysis... https://doi.org/10.1109/access.2019.2897017
- Avanzo, M., Stancanello, J., Pirrone, G., Drigo, A., & Retico, A. (2024). The evolution of artificial intelligence in medical imaging: from computer science to machine and deep learning. *Cancers*, *16*(21), 3702. https://doi.org/10.3390/cancers16213702
- Bobkov, A., Cheng, F., Xu, J., Bobkova, T., Deng, F., He, J., ... & Zheng, K. (2025). Telepsychiatry and artificial intelligence: a structured review of emerging approaches to accessible psychiatric care. *Healthcare*, *13*(11), 1348. https://doi.org/10.3390/healthcare13111348
- Endo, Y., Alaimo, L., Catalano, G., Chatzipanagiotou, O., & Pawlik, T. (2024). Application of artificial intelligence to hepatobiliary cancer clinical outcomes research. *Artificial Intelligence Surgery*, 4(2), 59-67. https://doi.org/10.20517/ais.2024.09
- Laurent, G., Craynest, F., Thobois, M., & Hajjaji, N. (2023). Automatic classification of tumor response from radiology reports with rule-based natural language processing integrated into the clinical oncology workflow. *JCO Clinical Cancer Informatics*, (7). https://doi.org/10.1200/cci.22.00139
- Lin, H., Ni, L., Phuong, C., & Hong, J. (2024). Natural language processing for radiation oncology: personalizing treatment pathways. *Pharmacogenomics and Personalized Medicine*, 17, 65-76. https://doi.org/10.2147/pgpm.s396971
- Lončar-Turukalo, T., Zdravevski, E., Silva, J., Chouvarda, I., & Trajkovik, V. (2019). Literature on wearable technology for connected health: scoping review of research trends, advances, and barriers. *Journal of Medical Internet Research*, 21(9), e14017. https://doi.org/10.2196/14017

- Molenaar, A., Lukose, D., Brennan, L., Jenkins, E., & McCaffrey, T. (2024). Using natural language processing to explore social media opinions on food security: sentiment analysis and topic modeling study. *Journal of Medical Internet Research*, 26, e47826. https://doi.org/10.2196/47826
- Syriopoulou–Delli, C. (2025). Advances in autism spectrum disorder (asd) diagnostics: from theoretical frameworks to ai-driven innovations. *Electronics*, 14(5), 951. https://doi.org/10.3390/electronics14050951
- Yu, H., Deng, H., He, J., Keasling, J., & Luo, X. (2023). Unikp: a unified framework for the prediction of enzyme kinetic parameters. *Nature Communications*, 14(1). https://doi.org/10.1038/s41467-023-44113-1
- Thompson, M., Wei, Y., Calkin, D., O'Connor, C., Dunn, C., Anderson, N., ... & Hogland, J. (2019). Risk management and analytics in wildfire response. Current Forestry Reports, 5(4), 226–239. https://doi.org/10.1007/s40725-019-00101-7
- Venkatasubramaniam, A., Mateen, B. A., Shields, B. M., Hattersley, A. T., Jones, A. G., Vollmer, S. J., & Dennis, J. (2022). Comparison of Causal Forest and Regression-Based Approaches to Evaluate Treatment Effect Heterogeneity: An Application for Type 2 Diabetes Precision Medicine. https://doi.org/10.1101/2022.11.07.22282023
- Wager, S., & Athey, S. (2018). Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests. *Journal of the American Statistical Association*, 113(523), 1228–1242. https://doi.org/10.1080/01621459.2017.1319839
- Wang, L., & Michoel, T. (2017). Whole-Transcriptome Causal Network Inference With Genomic and Transcriptomic Data. https://doi.org/10.1101/213371
- Wang, Y., Goren, L., Zheng, D., & Zhang, H. (2021). Short Communication: Forward and Inverse Models
 Relating River Long Profile to Monotonic Step-Changes in Tectonic Rock Uplift Rate History: A
 Theoretical Perspective Under a Nonlinear Slope-Erosion Dependency.
 https://doi.org/10.5194/esurf-2021-101