Deploying Differential Privacy in Emerging Economies: Evidence from Indonesia’s Digital Commerce Sector

Authors

  • Kamaruddin Sellang Universitas Muhammadiyah Sidenreng Rappang

DOI:

https://doi.org/10.61978/data.v3i1.921

Keywords:

Differential Privacy, E Commerce Analytics, Privacy Compliance, SmartNoise, Indonesia, Utility Privacy Trade Off, Data Governance

Abstract

The expansion of Indonesia’s digital economy has amplified the demand for privacy-preserving technologies, particularly in the e-commerce sector. This study explores the implementation of Differential Privacy (DP) to strike a balance between data utility and regulatory compliance. Through simulations involving BPS microdata, synthetic modeling via SmartNoise, and financial time series from Bank Indonesia, we applied calibrated DP mechanisms and evaluated performance using utility metrics (MAPE, MAE, AUC) across varying epsilon (ε) values. Results indicate that ε values between 1 and 3 offer optimal privacy-utility trade-offs, preserving analytical accuracy while ensuring compliance. The findings highlight SmartNoise’s usability and ISO 27559's role in promoting privacy by design. This work contributes a practical framework for DP adoption in Indonesia’s e-commerce sector, with broader relevance for Southeast Asia.

References

Abbas, M., Arshad, M., & Shahid, M. A. (2022). Charectarization of Groundwater Level Zones Using Innovative Trend &Amp;amp; Regression Analysis: Case Study at Rechna Doab-Pakistan. https://doi.org/10.21203/rs.3.rs-2140740/v2 DOI: https://doi.org/10.21203/rs.3.rs-2140740/v2

Akash, T. R., Lessard, D. J., Reza, N. R., & Islam, M. S. (2024). Investigating Methods to Enhance Data Privacy in Business, Especially in Sectors Like Analytics and Finance. Journal of Computer Science and Technology Studies, 6(5), 143–151. https://doi.org/10.32996/jcsts.2024.6.5.12 DOI: https://doi.org/10.32996/jcsts.2024.6.5.12

Akour, I., Alnazzawi, N., Alshurideh, M. T., Almaiah, M. A., Kurdi, B. A., Alfaisal, R., & Salloum, S. A. (2022). A Conceptual Model for Investigating the Effect of Privacy Concerns on E-Commerce Adoption: A Study on United Arab Emirates Consumers. Electronics, 11(22), 3648. https://doi.org/10.3390/electronics11223648 DOI: https://doi.org/10.3390/electronics11223648

Angell, K. (2023). Privacy Audit of Public Access Computers and Networks at a Public College Library. Information Technology and Libraries, 42(3). https://doi.org/10.5860/ital.v42i3.16233 DOI: https://doi.org/10.5860/ital.v42i3.16233

Aremu, A. Y., & Arfan, S. (2023). Factors Influencing the Usage of E-Business to Improve SME Performance. International Journal of E-Business Research, 19(1), 1–16. https://doi.org/10.4018/ijebr.324065 DOI: https://doi.org/10.4018/IJEBR.324065

Arthur, K. N. A., & Owen, ·Richard. (2022). A Micro-Ethnographic Study of Big Data-Based Innovation in the Financial Services Sector: Governance, Ethics and Organisational Practices. 57–69. https://doi.org/10.1007/978-3-031-18794-0_4 DOI: https://doi.org/10.1007/978-3-031-18794-0_4

Bandara, R., Fernando, M., & Akter, S. (2020). Managing Consumer Privacy Concerns and Defensive Behaviours in the Digital Marketplace. European Journal of Marketing, 55(1), 219–246. https://doi.org/10.1108/ejm-06-2019-0515 DOI: https://doi.org/10.1108/EJM-06-2019-0515

Bhojwani, S., & Thantharate, A. (2024). DPShield: Optimizing Differential Privacy for High-Utility Data Analysis in Sensitive Domains. Electronics, 13(12), 2333. https://doi.org/10.3390/electronics13122333 DOI: https://doi.org/10.3390/electronics13122333

Bittau, A., Erlingsson, Ú., Maniatis, P., Mironov, I., Raghunathan, A., Lie, D., Rudominer, M., Kode, U., Tinnes, J., & Seefeld, B. (2017). Prochlo. 441–459. https://doi.org/10.1145/3132747.3132769 DOI: https://doi.org/10.1145/3132747.3132769

Cao, Y., Yoshikawa, M., Xiao, Y., & Xiong, L. (2019). Quantifying Differential Privacy in Continuous Data Release Under Temporal Correlations. Ieee Transactions on Knowledge and Data Engineering, 31(7), 1281–1295. https://doi.org/10.1109/tkde.2018.2824328 DOI: https://doi.org/10.1109/TKDE.2018.2824328

Dehghanpouri, H., Soltani, Z., & Rostamzadeh, R. (2020). The Impact of Trust, Privacy and Quality of Service on the Success of E-Crm: The Mediating Role of Customer Satisfaction. Journal of Business and Industrial Marketing, 35(11), 1831–1847. https://doi.org/10.1108/jbim-07-2019-0325 DOI: https://doi.org/10.1108/JBIM-07-2019-0325

Fioretto, F., Tran, C., & Hentenryck, P. V. (2021). Decision Making With Differential Privacy Under a Fairness Lens. https://doi.org/10.48550/arxiv.2105.07513

Gardezi, A. I., Yuan, Z., Aziz, F., Parajuli, S., Mandelbrot, D. A., Chan, M. R., & Astor, B. C. (2024). Effect of End-Stage Renal Disease Prospective Payment System on Utilization of Peritoneal Dialysis in Patients With Kidney Allograft Failure. American Journal of Nephrology, 55(5), 551–560. https://doi.org/10.1159/000539062 DOI: https://doi.org/10.1159/000539062

Garrido, G. M., Near, J. P., Aitsam, M., He, W., Matzutt, R., & Matthes, F. (2021). Do I Get the Privacy I Need? Benchmarking Utility in Differential Privacy Libraries. https://doi.org/10.48550/arxiv.2109.10789

Gidea, M., & Katz, Y. A. (2018). Topological Data Analysis of Financial Time Series: Landscapes of Crashes. Physica a Statistical Mechanics and Its Applications, 491, 820–834. https://doi.org/10.1016/j.physa.2017.09.028 DOI: https://doi.org/10.1016/j.physa.2017.09.028

Gürsoy, M. E., Tamersoy, A., Truex, S., Wei, W., & Liu, L. (2019). Secure and Utility-Aware Data Collection With Condensed Local Differential Privacy. Ieee Transactions on Dependable and Secure Computing, 1–1. https://doi.org/10.1109/tdsc.2019.2949041 DOI: https://doi.org/10.1109/TDSC.2019.2949041

Hay, M., Machanavajjhala, A., Miklau, G., Chen, Y., & Zhang, D. (2016). Principled Evaluation of Differentially Private Algorithms Using DPBench. 139–154. https://doi.org/10.1145/2882903.2882931 DOI: https://doi.org/10.1145/2882903.2882931

Hermawan, A., Putra, O. H., Junaedi, J., Kurnia, Y., & Riki, R. (2024). Enhancing Consumer-to-Consumer (C2C) E-Commerce Through Blockchain: A Model-Driven Approach. Comtech Computer Mathematics and Engineering Applications, 15(1), 17–27. https://doi.org/10.21512/comtech.v15i1.10638 DOI: https://doi.org/10.21512/comtech.v15i1.10638

Husnayain, A., Fuad, A., & Lazuardi, L. (2019). Correlation Between Google Trends on Dengue Fever and National Surveillance Report in Indonesia. Global Health Action, 12(1), 1552652. https://doi.org/10.1080/16549716.2018.1552652 DOI: https://doi.org/10.1080/16549716.2018.1552652

Jain, S. (2024). Evaluating the Role of Data Privacy Regulations in Secure Software Development Life Cycles (SDLC). Cana, 32(1s), 483–494. https://doi.org/10.52783/cana.v32.2240 DOI: https://doi.org/10.52783/cana.v32.2240

Jayaraj, V. J., & Hoe, V. C. W. (2022). Forecasting HFMD Cases Using Weather Variables and Google Search Queries in Sabah, Malaysia. International Journal of Environmental Research and Public Health, 19(24), 16880. https://doi.org/10.3390/ijerph192416880 DOI: https://doi.org/10.3390/ijerph192416880

Johnson, N. M., Near, J. P., & Song, D. (2018). Towards Practical Differential Privacy for SQL Queries. Proceedings of the VLDB Endowment, 11(5), 526–539. https://doi.org/10.1145/3187009.3177733 DOI: https://doi.org/10.1145/3187009.3177733

Lande, O. B. S., Johnson, E., Adeleke, G. S., Amajuoyi, C. P., & Simpson, B. D. (2024). Enhancing Business Intelligence in E-Commerce: Utilizing Advanced Data Integration for Real-Time Insights. International Journal of Management & Entrepreneurship Research, 6(6), 1936–1953. https://doi.org/10.51594/ijmer.v6i6.1207 DOI: https://doi.org/10.51594/ijmer.v6i6.1207

Le, T. M., & Liaw, S. (2017). Effects of Pros and Cons of Applying Big Data Analytics to Consumers’ Responses in an E-Commerce Context. Sustainability, 9(5), 798. https://doi.org/10.3390/su9050798 DOI: https://doi.org/10.3390/su9050798

Mirdashtvan, M., Najafinejad, A., Malekian, A., & Sadoddin, A. (2019). Regional Analysis of Trend and Non‐stationarity of Hydro‐climatic Time Series in the Southern Alborz Region, Iran. International Journal of Climatology, 40(4), 1979–1991. https://doi.org/10.1002/joc.6313 DOI: https://doi.org/10.1002/joc.6313

Munshi, A. A., Alhindi, A., Qadah, T. M., & Alqurashi, A. (2023). An Electronic Commerce Big Data Analytics Architecture and Platform. Applied Sciences, 13(19), 10962. https://doi.org/10.3390/app131910962 DOI: https://doi.org/10.3390/app131910962

Mutambik, I., Lee, J., Almuqrin, A., Zhang, Z., Baihan, M. S., & Alkhanifer, A. (2023). Privacy Concerns in Social Commerce: The Impact of Gender. Sustainability, 15(17), 12771. https://doi.org/10.3390/su151712771 DOI: https://doi.org/10.3390/su151712771

Obudho, K. (2024). The Impact of Data Privacy Laws on Digital Marketing Practices. Journal of Modern Law and Policy, 4(1), 35–48. https://doi.org/10.47941/jmlp.2155 DOI: https://doi.org/10.47941/jmlp.2155

Patakamuri, S. K., Muthiah, K., & Sridhar, V. (2020). Long-Term Homogeneity, Trend, and Change-Point Analysis of Rainfall in the Arid District of Ananthapuramu, Andhra Pradesh State, India. Water, 12(1), 211. https://doi.org/10.3390/w12010211 DOI: https://doi.org/10.3390/w12010211

Pathak, S. (2024). Legal and Commercial Dynamics of E-Consumer Protection: Navigating Challenges in India’s Digital Economy. International Journal for Multidisciplinary Research, 6(5). https://doi.org/10.36948/ijfmr.2024.v06i05.28398 DOI: https://doi.org/10.36948/ijfmr.2024.v06i05.28398

Pramanik, M. I., Lau, R. Y., Hossain, Md. S., Rahoman, M. M., Debnath, S. K., Rashed, Md. G., & Uddin, Md. Z. (2020). Privacy Preserving Big Data Analytics: A Critical Analysis of State‐of‐the‐art. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, 11(1). https://doi.org/10.1002/widm.1387 DOI: https://doi.org/10.1002/widm.1387

Price, W. N., & Cohen, I. G. (2019). Privacy in the Age of Medical Big Data. Nature Medicine, 25(1), 37–43. https://doi.org/10.1038/s41591-018-0272-7 DOI: https://doi.org/10.1038/s41591-018-0272-7

Putra, A. T., Inanna, I., Tahir, T., Mustari, & Hasan, M. (2023). Analysis of Financial Literacy and Digital Literacy on the Sustainability of Micro, Small and Medium Enterprises (MSMEs). International Journal of Asian Business and Management, 2(6), 977–992. https://doi.org/10.55927/ijabm.v2i6.6978 DOI: https://doi.org/10.55927/ijabm.v2i6.6978

Qiu, J., Su, S., & Qian, J. (2024). A Granularity Time Series Forecasting Model Combining Three-Way Decision and Trend Information Granularity. https://doi.org/10.21203/rs.3.rs-4136524/v1 DOI: https://doi.org/10.21203/rs.3.rs-4136524/v1

Shan, C., Zhao, F., Wang, Y., Yang, C., Wei, F., & Zhou, X. (2024). Study on the Evolvement Trend Process of Hydrological Elements in Luanhe River Basin, China. Water, 16(8), 1169. https://doi.org/10.3390/w16081169 DOI: https://doi.org/10.3390/w16081169

Subramanian, R. (2022). Have the Cake and Eat It Too: Differential Privacy Enables Privacy and Precise Analytics. https://doi.org/10.21203/rs.3.rs-1847248/v1 DOI: https://doi.org/10.21203/rs.3.rs-1847248/v1

Threstia, Y., Andajani, E., & Trisnawati, J. D. (2022). The Influence of Customer Experience and Perceived Risk on Online Purchase Intention. 1086–1093. https://doi.org/10.2991/978-94-6463-008-4_134 DOI: https://doi.org/10.2991/978-94-6463-008-4_134

Wardhani, A., Hassan, H., & Musnur, I. (2023). Production and Exchange of Meaning in Instagram Beauty Influencer Visual Content in Indonesia: A Social Semiotic Analysis. Gelar Jurnal Seni Budaya, 21(2), 175–186. https://doi.org/10.33153/glr.v21i2.4748 DOI: https://doi.org/10.33153/glr.v21i2.4748

Widiarty, W. S., & Tehupeiory, A. (2024). The Role of Business Law in Improving Consumer Protection in the Digital Age. Journal of Law and Sustainable Development, 12(2), e3137. https://doi.org/10.55908/sdgs.v12i2.3137 DOI: https://doi.org/10.55908/sdgs.v12i2.3137

Wilson, D. M., Brow, R., Playfair, R., & Errasti‐Ibarrondo, B. (2018). What Is the “Right” Number of Hospital Beds for Palliative Population Health Needs? Societies, 8(4), 108. https://doi.org/10.3390/soc8040108 DOI: https://doi.org/10.3390/soc8040108

Wilson, R. J., Zhang, C. Y., Lam, W. H. K., Desfontaines, D., Simmons-Marengo, D., & Gipson, B. (2020). Differentially Private SQL With Bounded User Contribution. Proceedings on Privacy Enhancing Technologies, 2020(2), 230–250. https://doi.org/10.2478/popets-2020-0025 DOI: https://doi.org/10.2478/popets-2020-0025

Wiraguna, S. A., Sulaiman, A., & Barthos, M. (2024). Implementation of Consumer Personal Data Protection in Ecommerce From the Perspective of Law No. 27 of 2022. Journal of World Science, 3(3), 410–418. https://doi.org/10.58344/jws.v3i3.584 DOI: https://doi.org/10.58344/jws.v3i3.584

Yamaguchi, R., Yamamoto, T., Okamoto, K., Tatsuno, K., Ikeda, M., Tanaka, T., Wakabayashi, Y., Sato, T., Okugawa, S., Moriya, K., & Suzuki, H. (2022). Prospective Audit and Feedback Implementation by a Multidisciplinary Antimicrobial Stewardship Team Shortens the Time to De-Escalation of Anti-Mrsa Agents. Plos One, 17(7), e0271812. https://doi.org/10.1371/journal.pone.0271812 DOI: https://doi.org/10.1371/journal.pone.0271812

Zhao, J., Liu, S., Xiong, X., & Cai, Z. (2021). Differentially Private Autocorrelation Time-Series Data Publishing Based on Sliding Window. Security and Communication Networks, 2021, 1–10. https://doi.org/10.1155/2021/6665984 DOI: https://doi.org/10.1155/2021/6665984

Downloads

Published

2025-01-31

How to Cite

Sellang, K. (2025). Deploying Differential Privacy in Emerging Economies: Evidence from Indonesia’s Digital Commerce Sector. Data : Journal of Information Systems and Management, 3(1), 47–58. https://doi.org/10.61978/data.v3i1.921