Synthesis and Characterization of Oxide Catalysts Supported on Activated Carbon

Authors

  • B. A Hadi Shehu Shagari College of Education
  • A. U Muhammad Shehu Shagari College of Education
  • M. T Umar Ibrahim Badamasi Babangida University

DOI:

https://doi.org/10.61978/catalyx.v2i1.984

Keywords:

Activated carbon, Empty Fruit Bunch (EFB), Metal Oxide Catalysts, In-situ Activation, Hydrotreating, NiO/C, CoO/C, MoO₃/C, Porous carbon, Sustainable catalysis

Abstract

The rising costs of conventional hydrotreating catalysts necessitate sustainable alternatives. Here, activated carbon derived from Empty Fruit Bunch (EFB) fibre, a byproduct of palm oil production, was developed as a renewable catalyst support. Using nickel nitrate, cobalt nitrate, and ammonium molybdate as both activating agents and precursors. NiO/C, CoO/C, and MoO₃/C catalysts were synthesized via in-situ activation. SEM/EDX analysis confirmed uniform metal oxide dispersion and revealed porous carbon structures. The results establish EFB-derived activated carbon as a low-cost catalysts support material with significant potential for catalytic upgrading of pyrolysis oil. Its high surface area and tunable properties further enhance its suitability for hydrotreating and other sustainable catalytic applications. This work introduces an in-situ route where metal precursors act as both activators and catalysts precursors, producing efficient EFB-derived catalyst supports for pyrolysis oil upgrading.

References

Abdullah, N., Sulaiman, F., & Gerhauser, H. (2011). Characterisation of oil palm empty fruit bunches for fuel application. Journal of Physical Science, 22(1), 1–24.

Abdullahi, B. H., Sokoto, A. M., Muhammad, A. B., Alhassan, Y., & Muhammad. (2024). C. Journal of Process Chemistry and Technology.

Adriano, D. C. (1986). Other trace elements. In Trace elements in the terrestrial environment (pp. 470–501). Springer. DOI: https://doi.org/10.1007/978-1-4757-1907-9_14

Al-Harbi, M. H., Al-Zahrani, A. A., & Al-Otaibi, Y. M. (2018). Preparation and characterization of activated carbon from oil palm empty fruit bunch using different chemical activating agents. Journal of Environmental Chemical Engineering, 6(3), 3384–3391. https://doi.org/10.1016/j.jece.2018.05.017 DOI: https://doi.org/10.1016/j.jece.2018.05.017

Amouzadeh, E., Dianat, I., Faradmal, J., & Babamiri, M. (2025). Optimizing mobile app design for older adults: systematic review of age-friendly design. Aging Clinical and Experimental Research, 37(1). https://doi.org/10.1007/s40520-025-03157-7 DOI: https://doi.org/10.1007/s40520-025-03157-7

Anisuzzaman, S. M., Joseph, C. G., Wan Daud, W. M. A. B., Krishnaiah, D., Yee, H. S., Akhtar, M. S., Naseem, M. T., Ali, S., & Zaman, W. (2015). Metal-Based Catalysts in Biomass Transformation: From Plant Feedstocks to Renewable Fuels and Chemicals. Catalysts, 15(1), 40. DOI: https://doi.org/10.3390/catal15010040

Bai, P., Etim, U. J., Yan, Z., Mintova, S., Zhang, Z., Zhong, Z., & Gao, X. (2019). Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. Catalysis Reviews, 61(3), 333–405. DOI: https://doi.org/10.1080/01614940.2018.1549011

Bregante, D. T. (2020). Catalytic consequences of inner-and outer-sphere interactions at the solid-liquid interface in zeolites.

Centi, G., Lanzafame, P., & Perathoner, S. (2011). Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catalysis Today, 167(1), 14–30. https://doi.org/10.1016/j.cattod.2010.10.099 DOI: https://doi.org/10.1016/j.cattod.2010.10.099

Chadha, U., Selvaraj, S. K., Ashokan, H., Hariharan, S. P., Paul, V. M., Venkatarangan, V., & Paramasivam, V. (2022). Complex nanomaterials in catalysis for chemically significant applications: From synthesis and hydrocarbon processing to renewable energy applications. Advances in Materials Science and Engineering, 1552334. https://doi.org/10.1155/2022/1552334 DOI: https://doi.org/10.1155/2022/1552334

Collin, S. M. A., Wan, G. J., Ashri, M., & Wan, B. (2015). Preparation and characterization of activated carbon from Typha orientalis leaves. International Journal of Industrial Chemistry, 6(1), 9–21. https://doi.org/10.1007/s40090-014-0027-3 DOI: https://doi.org/10.1007/s40090-014-0027-3

Dam, J., & Elbersen, W. (2004). Palm oil production for oil and biomass: The solution for sustainable oil production and certifiably sustainable biomass production. Biomassa-Upstream Stuurgroep, 4, 1–9.

Ehweiner, M. A., Belaj, F., Kirchner, K., & Mösch-Zanetti, N. C. (2021). Synthesis and reactivity of a bioinspired molybdenum (IV) acetylene complex. Organometallics, 40(15), 2576–2583. DOI: https://doi.org/10.1021/acs.organomet.1c00289

Guo, J., Huo, J., Liu, Y., Wu, W., Wang, Y., Wu, M., & Wang, G. (2019). Nitrogen‐doped porous carbon supported nonprecious metal single‐atom electrocatalysts: from synthesis to application. Small Methods, 3(9), 1900159. DOI: https://doi.org/10.1002/smtd.201900159

Gupta, P. K., Kumar, V., & Maity, S. (2021). Renewable fuels from different carbonaceous feedstocks: a sustainable route through Fischer–Tropsch synthesis. Journal of Chemical Technology & Biotechnology, 96(4), 853–868. DOI: https://doi.org/10.1002/jctb.6644

Güvenatam, B., Kurşun, O., Heeres, E. H. J., Pidko, E. A., & Hensen, E. J. M. (2014). Hydrodeoxygenation of mono- and dimeric lignin model compounds on noble metal catalysts. Catalysis Today, 233, 83–91. https://doi.org/10.1016/j.cattod.2013.12.011 DOI: https://doi.org/10.1016/j.cattod.2013.12.011

Hadi, B., Sokoto, A. M., & Muhammad, A. B. (2020). Native palm oil empty fruit bunch fiber biomass characterization for pyrolysis process. Nigerian Journal of Solar Energy, 33, 152–157.

Hadjar, S., Ngadi, N., Abdul, A., Saidina, N., Jusoh, M., & Wong, S. (2016). Preparation of activated carbon from empty fruit bunch for hydrogen storage. Journal of Energy Storage, 8, 1–5. https://doi.org/10.1016/j.est.2016.10.001 DOI: https://doi.org/10.1016/j.est.2016.10.001

Harsono, S. S., Grundmann, P., & Siahaan, D. (2015). Role of biogas and biochar palm oil residues for reduction of greenhouse gas emissions in the biodiesel production. Energy Procedia, 65, 344–351. https://doi.org/10.1016/j.egypro.2015.01.063 DOI: https://doi.org/10.1016/j.egypro.2015.01.063

Idris, R., Chong, W. W. F., Ali, A., Idris, S., Hasan, M. F., Ani, F. N., & Chong, C. T. (2021). Phenol-rich bio-oil derivation via microwave-induced fast pyrolysis of oil palm empty fruit bunch with activated carbon. Environmental Technology & Innovation, 21, 101291. https://doi.org/10.1016/j.eti.2020.101291 DOI: https://doi.org/10.1016/j.eti.2020.101291

Khandaker, T., Islam, T., Nandi, A., Anik, M. A. A. M., Hossain, M. S., Hasan, M. K., & Hossain, M. S. (2025). Biomass-derived carbon materials for sustainable energy applications: A comprehensive review. Sustainable Energy & Fuels, 9(3), 693–723. https://doi.org/10.1039/D4SE01234B DOI: https://doi.org/10.1039/D4SE01393J

Kun, U. H., & Ksepko, E. (2025). Advancing Municipal Solid Waste Management Through Gasification Technology. Processes. DOI: https://doi.org/10.3390/pr13072000

Kwao, S., Vedachalam, S., Dalai, A. K., & Adjaye, J. (2024). Review of current advances in hydrotreating catalyst support. Journal of Industrial and Engineering Chemistry, 135, 1–16. https://doi.org/10.1016/j.jiec.2024.02.001 DOI: https://doi.org/10.1016/j.jiec.2024.01.027

Lindfors, C., Hernandez-Mena, L. E., Pecora, A. A. B., Beraldo, A. L., Mohamed Noor, N., Chiaramonti, D., Buffi, M., Rizzo, A. M., Prussi, M., Martelli, F., Goodwin, V., Yoosuk, B., Ratana, T., Tungkamani, S., Ben-Iwo, J., Manovic, V., Longhurst, P., Sadeek, S. A., Ahmed, H. S., & Sheth, S. (2017). A comprehensive characterization of pyrolysis oil from softwood barks. Polymers, 11(9). https://doi.org/10.3390/polym11091387 DOI: https://doi.org/10.3390/polym11091387

Liu, T., Wei, D., Zhang, G., Hu, L., Du, B., & Wei, Q. (2016). A comparison of the influence of flocculent and granular structure of sludge on activated carbon: preparation, characterization and application. RSC Advances, 6(90), 87353–87361. DOI: https://doi.org/10.1039/C6RA18881H

McMahon, T. (1992). High-temperature oxidation of MoO2-, α-Cr2O3-, and α-Al2O3-forming materials in low oxygen partial pressure atmospheres of H2/H2O/N2 and CO/CO2/N2.

Mortensen, P. M., Grunwaldt, J. D., Jensen, P. A., Knudsen, K. G., & Jensen, A. D. (2011). A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General, 407(1–2), 1–19. https://doi.org/10.1016/j.apcata.2011.08.046 DOI: https://doi.org/10.1016/j.apcata.2011.08.046

Muhammad, C., Almustapha, M. N., Tambuwal, A. D., & Idris, B. H. A. (2021). Application of green catalyst synthesized from snail shell in conversion of marula seeds oil to biodiesel. Journal of Fundamentals of Renewable Energy and Applications, 11, 1000002.

Muhammad, M. U., Hadi, B. A., Idri, B., & Abduljalil, M. M. (2021). Preparation of high surface area activated carbon from native rice husk. London Journal of Engineering Research, 21(3), 13–19.

Nachenius, R. W., Ronsse, F., Venderbosch, R. H., & Prins, W. (2013). Biomass pyrolysis. In Advances in Chemical Engineering (Vol. 42, pp. 1–68). Elsevier. https://doi.org/10.1016/B978-0-12-386505-2.00002-X DOI: https://doi.org/10.1016/B978-0-12-386505-2.00002-X

Naik, S. N., Goud, V. V, Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003 DOI: https://doi.org/10.1016/j.rser.2009.10.003

Napier, C. J., Mabokela, R. O., & King, K. L. (2002). Apartheid no more: Case studies of Southern African universities in the process of transformation. Canadian Journal of African Studies, 36(1), 159–180. https://doi.org/10.2307/4107413 DOI: https://doi.org/10.2307/4107413

Nb, O., Shamsuddin, N., & Uemura, Y. (2016). Activated carbon of oil palm empty fruit bunch (EFB): Core and shaggy. Procedia Engineering, 148, 758–764. https://doi.org/10.1016/j.proeng.2016.06.610 DOI: https://doi.org/10.1016/j.proeng.2016.06.610

Nda-Umar, U. I., Ramli, I., Muhamad, E. N., Taufiq-Yap, Y., & Azri, N. (2020). Synthesis and characterization of sulfonated carbon catalysts derived from biomass waste and its evaluation in glycerol acetylation. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00784-0 DOI: https://doi.org/10.1007/s13399-020-00784-0

Omar, R., Idris, A., Yunus, R., Khalid, K., & Aida Isma, M. I. (2011). Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel, 90(4), 1536–1544. https://doi.org/10.1016/j.fuel.2011.01.023 DOI: https://doi.org/10.1016/j.fuel.2011.01.023

Otti, V. I., Ifeanyichukwu, H. I., Nwaorum, F. C., & Ogbuagu, F. U. (2014). Sustainable oil palm waste management in engineering development. Civil and Environmental Research, 6(5), 121–126.

Oudar, J. (1980). Sulfur adsorption and poisoning of metallic catalysts. Catalysis Reviews—Science and Engmeering, 22(2), 171–195. DOI: https://doi.org/10.1080/03602458008066533

Pogaku, R., Hardinge, B. S., Vuthaluru, H., & Amir, H. A. (2016). Production of bio-oil from oil palm empty fruit bunch by catalytic fast pyrolysis: A review. Biofuels, 7(6), 647–660. https://doi.org/10.1080/17597269.2016.1187539 DOI: https://doi.org/10.1080/17597269.2016.1187539

Purnama, H. (2003). Catalytic study of copper-based catalysts for steam reforming of methanol.

Ronsse, F., Dickinson, D., Nachenius, R., & Prins, W. (2013). Biomass pyrolysis and biochar characterization. In Proceedings of the 1st FOREBIOM Workshop (Vol. 4, No. 4, p. 2013).

Rueda-Ordóñez, Y. J., Arias-Hernández, C. J., Manrique-Pinto, J. F., Gauthier-Maradei, P., & Bizzo, W. A. (2019). Assessment of the thermal decomposition kinetics of empty fruit bunch, kernel shell and their blend. Bioresource Technology, 292, 121923. https://doi.org/10.1016/j.biortech.2019.121923 DOI: https://doi.org/10.1016/j.biortech.2019.121923

Sait, H. H., Hussain, A., Salema, A. A., & Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 118, 382–389. https://doi.org/10.1016/j.biortech.2012.04.081 DOI: https://doi.org/10.1016/j.biortech.2012.04.081

Sakidja, R. (2003). Phase stability and transition metal addition in molybdenum-silicon-boron alloys.

Shrestha, S. (2016). Chemical, structural and elemental characterization of biosorbents using FE-SEM, SEM-EDX, XRD/XRPD and ATR-FTIR techniques. J Chem Eng Process Technol, 7(3), 1–11. DOI: https://doi.org/10.4172/2157-7048.1000295

Singh, R. , S. M. K. , B. S. , S. A. , K. D. K. , G. P. C. , . & G. P. K. (2017). Facile synthesis of highly conducting and mesoporous carbon aerogel as platinum support for PEM fuel cells. International Journal of Hydrogen Energy, 42(16), 11110–11117. DOI: https://doi.org/10.1016/j.ijhydene.2017.02.207

Sulaiman, F., & Abdullah, N. (2011). Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy, 36(5), 2352–2359. https://doi.org/10.1016/j.energy.2010.12.067 DOI: https://doi.org/10.1016/j.energy.2010.12.067

Sun, Y., Yue, Q., Gao, B., Li, Q., Huang, L., Yao, F., & Xu, X. (2012). Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption. Journal of Colloid and Interface Science, 368(1), 521–527. DOI: https://doi.org/10.1016/j.jcis.2011.10.067

Teo, E. Y. L., Muniandy, L., Ng, E. P., Adam, F., Mohamed, A. R., Jose, R., & Chong, K. F. (2016). High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochimica Acta, 192, 110–119. DOI: https://doi.org/10.1016/j.electacta.2016.01.140

Triantafyllidis, S. K. (2013). Biofuels get in the fast lane: Developments in plant feedstock production and processing. Advances in Crop Science and Technology, 1(4), 1–16. https://doi.org/10.4172/2329-8863.1000117 DOI: https://doi.org/10.4172/2329-8863.1000117

Tsiotsias, A. I., Charisiou, N. D., Yentekakis, I. V, & Goula, M. A. (2020). The role of alkali and alkaline earth metals in the CO2 methanation reaction and the combined capture and methanation of CO2. Catalysts, 10(7), 812. DOI: https://doi.org/10.3390/catal10070812

Tsoncheva, T., Genova, I., Stoycheva, I., Spassova, I., Ivanova, R., Tsyntsarski, B., & Petrov, N. (2015). Activated carbon from waste biomass as catalyst support: Formation of active phase in copper and cobalt catalysts for methanol decomposition. Journal of Porous Materials, 22(5), 1127–1136. https://doi.org/10.1007/s10934-015-9995-9 DOI: https://doi.org/10.1007/s10934-015-9988-7

Wang, B., Lan, J., Bo, C., Gong, B., & Ou, J. (2023). Adsorption of heavy metal onto biomass-derived activated carbon. RSC Advances, 13(7), 4275–4302. https://doi.org/10.1039/D2RA07517A DOI: https://doi.org/10.1039/D2RA07911A

Wang, H., Wu, J., Xiao, Z., Ma, Z., Li, P., Zhang, X., & Fang, X. (2021). Sulfidation of MoO3/γ-Al2O3 towards a highly efficient catalyst for CH4 reforming with H2S. Catalysis Science & Technology, 11(3), 1125–1140. DOI: https://doi.org/10.1039/D0CY02226H

Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45(5), 651–671. https://doi.org/10.1016/S0196-8904(03)00177-8 DOI: https://doi.org/10.1016/S0196-8904(03)00177-8

Yan, K., Wang, D., & Li, H. (2021). Atom doping engineering of metal/carbon catalysts for biomass hydrodeoxygenation. ACS Sustainable Chemistry & Engineering, 9(49), 16531–16555. https://doi.org/10.1021/acssuschemeng.1c05908 DOI: https://doi.org/10.1021/acssuschemeng.1c04341

Yang, Y., Peng, Y., Liu, Y., & Luo, Z. (2014). Preparation of activated carbon from empty fruit bunch by CO2 activation. Bioresource Technology, 166, 451–456. https://doi.org/10.1016/j.biortech.2014.05.059 DOI: https://doi.org/10.1016/j.biortech.2014.05.059

Yin, C. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 90(3), 1128–1132. https://doi.org/10.1016/j.fuel.2010.11.031 DOI: https://doi.org/10.1016/j.fuel.2010.11.031

Yoo, H. M., Park, S. W., Seo, Y. C., & Kim, K. H. (2019). Applicability assessment of empty fruit bunches from palm oil mills for use as bio-solid refuse fuels. Journal of Environmental Management, 234, 1–7. https://doi.org/10.1016/j.jenvman.2018.11.031 DOI: https://doi.org/10.1016/j.jenvman.2018.11.035

Yusufu, M. I., Ariahu, C. C., & Igbabul, B. D. (2012). Production and characterization of activated carbon from selected local raw materials. African Journal of Pure and Applied Chemistry, 12(3), 201–210. https://doi.org/10.5897/AJPAC12.022 DOI: https://doi.org/10.5897/AJPAC12.022

Zhang, P., Zhu, H., & Dai, S. (2015). Porous carbon supports: Recent advances with various morphologies and compositions. ChemCatChem, 7(18), 2788–2805. DOI: https://doi.org/10.1002/cctc.201500368

Zheng, X., Lei, G., Wang, S., Shen, L., Zhan, Y., & Jiang, L. (2023). Advances in resources recovery of H2S: A review of desulfurization processes and catalysts. ACS Catalysis, 13(17), 11723–11752. https://doi.org/10.1021/acscatal.3c02709. DOI: https://doi.org/10.1021/acscatal.3c02294

Downloads

Published

2025-01-30

How to Cite

Hadi, B. A., Muhammad, A. U., & Umar, M. T. (2025). Synthesis and Characterization of Oxide Catalysts Supported on Activated Carbon. Catalyx : Journal of Process Chemistry and Technology, 2(1), 1–13. https://doi.org/10.61978/catalyx.v2i1.984