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INTRODUCTION

Sub-Saharan Africa, with its extensive agricultural activities, generates vast quantities of
underutilized biomass waste, representing a valuable resource for a bio-based economy (Rueda-
Ordofiez et al., 2019). Oil palm (Elaeis guineensis), widely cultivated across the globe, traces its
origins to West Africa and has a long history of domestication in Nigeria (Otti et al., 2014).
Processing of fresh fruit bunches produces large amounts of biomass waste, including Empty Fruit
Bunches (EFB), mesocarp fiber, palm kernel shell, palm kernel meal, and palm oil mill effluent,
which could serve as feedstocks for sustainable applications (Elbersen et al.,, 2005). In Nigeria,
despite the economic importance of the palm oil industry, the vast volumes of EFB generated pose
significant environmental challenges, yet remain an abundant and inexpensive precursor for
activated carbon production (Yoo et al., 2019). More broadly, agricultural residues lignocellulosic
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materials generated from crop harvesting and processing are increasingly recognized as promising
precursors for renewable energy production (Mortensen et al.,, 2011; Idris et al., 2016). These
residues, categorized as field-based (primary) or process-based (secondary), hold considerable
potential for thermochemical conversion into biofuels and bio-chemicals (Purnama, 2003). While
direct combustion of biomass remains a simple energy option, particularly in rural Nigeria, its
complex lignocellulosic composition offers far greater opportunities for advanced thermochemical
applications.

The complex composition of lignocellulosic biomass presents opportunities for advanced
thermochemical conversion processes, such as catalytic hydrodeoxygenation (HDO), which can
yield higher-value sustainable hydrocarbons (Bai et al., 2019; Nachenius et al, 2013).
Lignocellulosic biomass, the most abundant renewable source of organic carbon, is a central focus
in the bio-based economy and is composed primarily of cellulose (40-50%), hemicelluloses (25—
35%), and lignin (15-20%) (Centi et al., 2011; Anisuzzaman et al., 2015). This non-food resource
can be deconstructed through thermochemical pathways into reactive intermediates for biofuel and
biochemical production (Lindfors and Feiz, 2023; Triantafyllidis, 2013). The ongoing global energy
crisis, driven by the increasing demand of modern society, underscores the urgent need to shift
from finite fossil fuels major contributors to greenhouse gas emissions toward renewable
alternatives such as agricultural residues (Hadi et al., 2017; Idris et al., 2021; Yaman, 2004).

Developing cost-effective and sustainable catalysts is critical for upgrading bio-oils. Activated
carbon, with its high surface area and strong adsorption capacity, is widely recognized as an
excellent catalyst support (Sun et al., 2012; Teo et al., 2016). However, commercial activated
carbons are typically derived from non-renewable and costly raw materials. In contrast, producing
activated carbon from waste agricultural products particularly oil palm biomass offers a more
sustainable and economical alternative (Abdullah et al., 2011; Al-Harbi et al., 2018; Nb et al., 2010).
High-surface-area activated carbons have been synthesized using chemical activating agents such
as ZnCl,, KOH, K;COg3, and H3PO, (Muhammad et al., 2021; Triana et al., 2025). Among these,
Empty Fruit Bunches (EFB) present distinct advantages as a precursor, simultaneously addressing
environmental challenges linked to waste disposal and providing a low-cost feedstock for catalyst
supports (Yang et al., 2014; Yusufu et al., 2012). Moreover, the unique porous structure and tunable
surface chemistry of EFB-derived activated carbon enhance metal dispersion and catalytic activity,
making it a promising material for bio-oil upgrading(Hadjar et al., 2010).

This research aims to valorize Empty Fruit Bunch (EFB) fibers, a major agricultural residue in
Nigeria, by producing activated carbon as a support for novel NiO, CoO, and MoO3 catalysts.
These activated carbon—supported catalysts will be explored for their potential in upgrading bio-
oil and vegetable oils through deoxygenation. The use of cost-effective, high-performance catalysts
under lower operating pressures is critical for the economic viability of bio-oil upgrading
(Amouzadeh et al., 2025). Therefore, this study focuses on the synthesis and characterization of
NiO, CoO, and MoOs3 catalysts supported on EFB-derived activated carbon for catalytic
deoxygenation of hydrocarbons in pyrolysis oil.
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METHOD
Synthesis of Catalysts using Activated Carbon as Support

ETB fibers, collected from three palm oil processing plants in Benue State, Nigeria, were utilized
as the precursor for activated carbon production (Abdullahi et al., 2024). The EFB fibers were
initially washed extensively with deionized water to remove surface impurities, followed by drying
in an oven at 105°C for 24 hours. A 20 wt% of NiO/C, MoO3/C and CoO/C catalysts were
synthesized via the in-situ wet impregnation method. Stoichiometric amounts of Nickel Nitrate
hexahydrate (Ni(INO3)2-6H,0) and Ammonium Molybdate hexahydrate
(NH4)6M07024.4H20) were dissolved for each in deionized water and heated at 90°C for 2hrs
to facilitate the formation of the metal oxide precursors. The dried biomass was then subjected to
in-situ activation and simultaneous doping with nickel nitrate, cobalt nitrate, and ammonium
molybdate as activating agents as well as metal oxide precursors to produce NiO/C, CoO/C, and
MoO3/C catalysts respectively via an in-situ activation method solution. Following impregnation,
the mixture was maintained in a water bath at 90°C for 2 hours under constant agitation (700rpm)
to ensure thorough reagent absorption. The impregnated sample was subsequently dried in an oven
at 110°C for 24 hours. Then, activation process was carried out in a muffle furnace at 550°C for 4
hours (Liu et al., 2016). To eliminate residual activating agent and ash, the resulting activated carbon
was refluxed with deionized water for 3 hours, a process repeated until a neutral pH was achieved.
Finally, the activated carbon was refluxed with a 0.1M nitric acid (HNOj3) solution for 1 hour to
further remove any remaining heavy metals (Anisuzzaman et al., 2015).

SEM-EDX Analysis for Catalysts Characterization

Samples were pulverized to ~0.15 mm (100 mesh) using a jaw crusher, disc mill, and vibrating cup
mill, then mounted on carbon tape-coated stubs. The SEM was calibrated and operated under
optimized parameters (accelerating voltage, beam current, and resolution) after a stabilization
period. Mounted samples were inserted into the chamber, focused, and imaged at magnifications
ranging from X500 to %150,000. Acquired micrographs were transferred to the EDX system,
where selected regions were analyzed for elemental composition (Shrestha, 2016).

RESULT AND DISCUSSION

EDX Analysis of CoO/C Catalyst

The SEM-EDX results (Table 1) identify cobalt (41.78 wt%) and carbon (12.75 wt%) as the
dominant elements in the synthesized catalyst. The unusually high cobalt concentration confirms
substantial incorporation of the active phase onto the carbon support. Reported Co/activated
catbon (CoO/C) catalysts typically exhibit loadings in the range of 5-20 wt% (Suri, 2001;
Tsoncheva et al.,, 2015). The significantly higher cobalt fraction in this study suggests enhanced
surface enrichment or stronger metal support interactions. This improvement could translate into
greater catalytic activity and stability under hydrotreating conditions (Bregante, 2020). The carbon
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fraction (12.75 wt%) reflects the biomass-derived activated carbon matrix, which provides high
surface area and anchoring sites for metal dispersion (B. Wang et al., 2023).

Table 1: EDX Analysis of CoO/C Catalyst

Element Element Element Atomic Weight
Number Symbol Name Conc. Conc.
27 Co Cobalt 22.50 41.78
6 C Catbon 33.69 12.75
13 Al Aluminium 13.94 11.85
14 Si Silicon 8.36 7.40
20 Ca Calcium 4.82 6.08
19 K Potassium 4.86 5.99
12 Mg Magnesium 4.27 3.27
26 Fe Tron 1.83 3.22
16 S Sulfur 1.92 1.94
15 P Phosphorus 1.32 1.28
40 Zr Zirconium 0.39 1.12
17 Cl Chlorine 0.85 0.95
22 Ti Titanium 0.44 0.66
41 Nb Niobium 0.21 0.61
25 Mn Manganese 0.27 0.48
29 Cu Copper 0.22 0.44
23 \Y Vanadium 0.12 0.19

SEM Morphological structural analysis in Platela revealed cobalt (41.78 wt%) and carbon (12.75
wt%) as the major constituents, confirming a high cobalt loading on a carbonaceous matrix.
Reported CoO/C catalysts typically contain 5-20 wt% cobalt, such as ~7 wt% for ammonia
decomposition and 2.5-15 wt% across CoO/C series (Wan et al., 2015). The significantly higher
cobalt fraction observed in this study therefore places the material at the upper end of reported
loadings suggesting Co-rich formulation. Such high loading is advantageous for catalytic activity,
as it increases the density of active sites while the porous carbon support provides dispersion and
stabilization.

4 | Catalyx : Journal of Process Chemistry and Technology



Synthesis And Characterization of Oxide Catalysts Supported on Activated Carbon
Hadi, Muhammad, Umar

EDX Analysis of NiO/C Catalyst

SEM-EDX analyses presented in Table 2 of the cobalt and nickel-loaded activated carbon systems
reveal strikingly different compositional features despite their shared biomass-derived carbon
supports. By contrast, the NiO/C sample contained 37.04 wt% nickel and 19.41 wt% carbon, also
surpassing the conventional NiO/C range (5-20 wt%) commonly applied in hydrogenation and
reforming catalysis (Guo et al., 2019; Singh, 2017). Both systems therefore represent unusually
metal-rich formulations, likely reflecting surface enrichment detectable by EDX, which could
translate into high surface site density.

Table 2: EDX Analysis of NiO/C Catalyst

Element Element Element Atomic Weight

Number Symbol Name Conc. Conc.
28 Ni Nickel 17.70 37.04
14 Si Silicon 19.64 19.67
6 C Carbon 45.32 19.41
19 K Potassium 3.09 4.31
20 Ca Calcium 2.73 3.90
13 Al Aluminium 3.83 3.69
26 Fe Iron 1.43 2.86
12 Mg Magnesium 2.14 1.86
16 S Sulfur 1.37 1.57
40 VA Zirconium 0.46 1.49
50 Sn Tin 0.34 1.43
56 Ba Barium 0.17 0.84
15 P Phosphorus 0.59 0.65
11 Na Sodium 0.68 0.55
17 Cl Chlorine 0.37 0.47
25 Mn Manganese 0.14 0.27

SEM/EDX Characterization of MoO3/C Catalyst

Elemental analysis confirms molybdenum as the dominant element on the catalyst surface, at 42.48
wt%, which far exceeds the carbon fraction present at 20.29 wt%. This indicates a metal-rich
surface composition that contrasts with typical MoO/C catalysts treported to have molybdenum
loadings of 10-15 wt% (Ehweiner et al., 2021). Compared with CoO/C and NiO/C catalysts,
which have lower metal fractions and higher carbon contents (41.78 wt% Co and 37.04 wt% Ni
respectively), the MoO/C catalyst shows a notably higher enrichment of active metal species. The
catalyst also contains significant amounts of aluminum (12.58 wt%) and silicon (9.64 wt%),
elements attributed to its biomass precursor source, as well as alkali and alkaline-earth elements
such as calcium (3.80 wt%) and potassium (3.62 wt%o).

An important characteristic is the presence of sulfur at 3.22 wt%, unlike the negligible amounts
found in the CoO/C and NiO/C catalysts. Sulfur presence is significant because, in Mo-based
hydrotreating catalysts, sulfiding is intentionally introduced to form the catalytically active MoS;
phase (Harsono et al., 2015; H. Wang et al., 2021). The naturally occurring sulfur in this catalyst
may play a dual role where it could facilitate in-situ sulfiding and enhancing catalyst activation
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(Zheng et al., 2023). Similarly, additional trace elements such as magnesium, copper, and zinc, all
below 2 wt%, further emphasize the complex promoter profile of this biomass-derived activated
carbon catalyst (Kun & Ksepko, 2025). Alternatively, it may pose risks of site blocking depending
on operating conditions(Bai et al., 2019).

Taken together, SEM and EDX analyses portray the MoOs/C system as a unique, metal-rich
composite material with sulfur and promoter functionalities not as highly present in CoO/C ot
Ni/C catalysts (Sakidja, 2003). This composition suggests that while CoO/C and NiO/C catalysts
may be more suitable for hydrodeoxygenation and hydrogenation, MoO;3/C catalysts could offer

superior performance in hydrotreating or syngas upgrading applications where beneficial sulfur—
molybdenum interactions are critical (Guvenatam et al., 2014; McMahon, 1992).

Table 3: EDX Analysis of MoO3/C Catalyst

Element Element Element Atomic Weight
Number Symbol Name Conc. Conc.
42 Mo Molybdenum 13.26 42.48
6 C Carbon 50.59 20.29
13 Al Aluminium 13.96 12.58
14 Si Silicon 10.28 9.64
20 Ca Calcium 2.84 3.80
19 K Potassium 2.77 3.62
16 S Sulfur 3.00 3.22
29 Cu Copper 0.85 1.80
12 Mg Magnesium 2.01 1.63
30 Zn Zinc 0.43 0.94

Mortphologically, the SEM micrograph of the Ni/AC sample (Plate 1b) illustrates a heterogeneous,
porous surface typical of biomass-derived carbons, with micron-scale roughness that supports
strong anchoring of Ni particles. Elemental analysis revealed secondary components including Al
(11.85 wt%), Si (7.40 wt%), Ca (6.08 wt%), K (5.99 wt%), Mg (3.27 wt%), and Fe (3.22 wt%),
consistent with the ash fingerprint of biomass-derived carbons. Rather than inert residues, these
alkali and alkaline-earth species can act as in situ promoters, enhancing surface basicity,
strengthening metal support interactions, and improving both activity and selectivity in
hydrotreating and hydrodeoxygenation (HDO) pathways (Khandaker et al., 2025; Tsoncheva et al.,
2015). In particular, K, Ca, and Mg are frequently reported to accelerate HDO rates and shift
product distributions through base-catalyzed mechanisms (Adriano, 1986; Oudar, 1980). The
unusually high silica fraction in the NiO/C sample suggests embedded SiO; domains that may
impart acid-base bifunctionality and enhance thermal stability, as observed in Ni-SiO,/C
composites (Kwao et al., 2024). Trace elements such as S, P, Cl, Ti, Zr, and V were present below
1.5 wt% . While sulfur and chlorine are potential poisons, transition-metal oxides of Ti and Zr can
contribute additional acid—base or redox functionality, potentially modifying catalyst performance
(Bregante, 2020). Importantly, the much higher cobalt incorporation observed here compared to
conventional CoO/C systems, when coupled with these intrinsic mineral promoters, suggests a
synergistic effect (Gupta et al., 2021). This synergy is likely responsible for enhancing both catalytic
stability and efficiency under hydrotreating conditions (Ay and Sen, 2021; Tsiotsias et al., 2020).
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Table 4: Comparative physicochemical features of CoO/C, NiO/C, and MoOs/C
catalysts derived from activated carbon supports.

Major Metal Carbon Key Promoter Notable Features and

Catalyst " 0%) (wt%)  Elements (wt%) Implications

Balanced metal/carbon ratio;
K (4.24), Ca (3.92), high alkali and alkaline ecarth
Si(8.27), Al (8.23), promoters enhance basicity;
Fe (3.12), Mg (1.93), suitable for
S (1.67) hydrodeoxygenation (HDO)

and hydrogenation reactions.

CoO/C Co:41.78 21.26

Significant  Si/Al  presence
(from biomass ash) provides
structural stability and acidity;

Si (19.67), Al (3.69),
K (4.31), Ca (3.90),
NiO/C  Ni: 37.04 19.41 Fe (2.86), Mg (1.86),

S (1.57), Zt/Sn/Ba Ni enhances Cc-C
traces hydrogenolysis; good for
hydrocracking and HDO.

Strongly metal-rich surface;
Al (12.58), Si (9.64), unique sulfur co-presence
K (3.62), Ca (3.80), S may facilitate in-situ MoS;
(3.22), Mg (1.63), formation, advantageous for
Cu/”Zn traces hydrotreating  and  syngas
upgrading.

MoO;/C Mo: 42.48 20.29

CONCLUSION

This research has emphasized the promise of activated carbon-supported catalysts in
hydrodeoxygenation and bio-oil upgrading, demonstrating how their high surface area, tunable
porosity, and surface chemistry enhance catalytic activity. In particular, activated carbon derived
from EFB not only offers advantages of abundance, low cost, and agricultural residue valorization
but also provides a naturally promoted support matrix that enhances metal dispersion. The notably
high metal content and the presence of intrinsic promoter elements in the EFB-derived activated
carbon further distinguish this work, suggesting stronger metal support interactions and improved
catalytic stability under hydrotreating conditions. While challenges remain including scale-up
feasibility, reproducibility, and long-term stability future research should focus on in situ
characterization of active sites, scalable synthesis strategies, and techno-economic as well as life-
cycle assessments. Activated carbon-supported catalysts, especially those from EFB, represent a
globally relevant and scalable pathway to green energy by aligning environmental sustainability with
industrial innovation.
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