Catalyx: Journal of Process Chemistry and Technology

E-ISSN: 3063-508X

Volume. 2 Issue 1 January 2025

Page No: 1-13

Synthesis and Characterization of Oxide Catalysts Supported on Activated Carbon

B. A. Hadi¹, A. U. Muhammad², M.T. Umar³ Shehu Shagari College of Education, Nigeria¹² Ibrahim Badamasi Babangida University, Nigeria³

Correspondent: alkanci123@gmail.com 1

Received : November 3, 2025 Accepted : December 12, 2025 Published : January 30, 2025

Citation: Hadi, B, A., Muhammad, A, U., & Umar, M, T. (2025). Synthesis And Characterization of Oxide Catalysts Supported On Activated Carbon. Catalyx: Journal of Process Chemistry and Technology, 2(1), 1-13 https://doi.org/10.61978/catalyx.v2i1

ABSTRACT: The rising costs of conventional hydrotreating catalysts necessitate sustainable alternatives. Here, activated carbon derived from Empty Fruit Bunch (EFB) fibre, a byproduct of palm oil production, was developed as a renewable catalyst support. Using nickel nitrate, cobalt nitrate, and ammonium molybdate as both activating agents and precursors. NiO/C, CoO/C, and MoO₃/C catalysts were synthesized via in-situ activation. SEM/EDX analysis confirmed uniform metal oxide dispersion and revealed porous carbon structures. The results establish EFB-derived activated carbon as a low-cost catalysts support material with significant potential for catalytic upgrading of pyrolysis oil. Its high surface area and tunable properties further enhance its suitability for hydrotreating and other sustainable catalytic applications. This work introduces an in-situ route where metal precursors act as both activators and catalysts precursors, producing efficient EFB-derived catalyst supports for pyrolysis oil upgrading.

Keywords: Activated Carbon, Empty Fruit Bunch (EFB), Metal Oxide Catalysts, In-situ Activation, Hydrotreating, NiO/C, CoO/C, MoO₃/C, Porous Carbon, Sustainable Catalysis.

This is an open access article under the CC-BY 4.0 license

INTRODUCTION

Sub-Saharan Africa, with its extensive agricultural activities, generates vast quantities of underutilized biomass waste, representing a valuable resource for a bio-based economy (Rueda-Ordóñez et al., 2019). Oil palm (Elaeis guineensis), widely cultivated across the globe, traces its origins to West Africa and has a long history of domestication in Nigeria (Otti et al., 2014). Processing of fresh fruit bunches produces large amounts of biomass waste, including Empty Fruit Bunches (EFB), mesocarp fiber, palm kernel shell, palm kernel meal, and palm oil mill effluent, which could serve as feedstocks for sustainable applications (Elbersen et al., 2005). In Nigeria, despite the economic importance of the palm oil industry, the vast volumes of EFB generated pose significant environmental challenges, yet remain an abundant and inexpensive precursor for activated carbon production (Yoo et al., 2019). More broadly, agricultural residues lignocellulosic

materials generated from crop harvesting and processing are increasingly recognized as promising precursors for renewable energy production (Mortensen et al., 2011; Idris et al., 2016). These residues, categorized as field-based (primary) or process-based (secondary), hold considerable potential for thermochemical conversion into biofuels and bio-chemicals (Purnama, 2003). While direct combustion of biomass remains a simple energy option, particularly in rural Nigeria, its complex lignocellulosic composition offers far greater opportunities for advanced thermochemical applications.

The complex composition of lignocellulosic biomass presents opportunities for advanced thermochemical conversion processes, such as catalytic hydrodeoxygenation (HDO), which can yield higher-value sustainable hydrocarbons (Bai et al., 2019; Nachenius et al., 2013). Lignocellulosic biomass, the most abundant renewable source of organic carbon, is a central focus in the bio-based economy and is composed primarily of cellulose (40–50%), hemicelluloses (25–35%), and lignin (15–20%) (Centi et al., 2011; Anisuzzaman et al., 2015). This non-food resource can be deconstructed through thermochemical pathways into reactive intermediates for biofuel and biochemical production (Lindfors and Feiz, 2023; Triantafyllidis, 2013). The ongoing global energy crisis, driven by the increasing demand of modern society, underscores the urgent need to shift from finite fossil fuels major contributors to greenhouse gas emissions toward renewable alternatives such as agricultural residues (Hadi et al., 2017; Idris et al., 2021; Yaman, 2004).

Developing cost-effective and sustainable catalysts is critical for upgrading bio-oils. Activated carbon, with its high surface area and strong adsorption capacity, is widely recognized as an excellent catalyst support (Sun et al., 2012; Teo et al., 2016). However, commercial activated carbons are typically derived from non-renewable and costly raw materials. In contrast, producing activated carbon from waste agricultural products particularly oil palm biomass offers a more sustainable and economical alternative (Abdullah et al., 2011; Al-Harbi et al., 2018; Nb et al., 2016). High-surface-area activated carbons have been synthesized using chemical activating agents such as ZnCl₂, KOH, K₂CO₃, and H₃PO₄ (Muhammad et al., 2021; Triana et al., 2025). Among these, Empty Fruit Bunches (EFB) present distinct advantages as a precursor, simultaneously addressing environmental challenges linked to waste disposal and providing a low-cost feedstock for catalyst supports (Yang et al., 2014; Yusufu et al., 2012). Moreover, the unique porous structure and tunable surface chemistry of EFB-derived activated carbon enhance metal dispersion and catalytic activity, making it a promising material for bio-oil upgrading(Hadjar et al., 2016).

This research aims to valorize Empty Fruit Bunch (EFB) fibers, a major agricultural residue in Nigeria, by producing activated carbon as a support for novel NiO, CoO, and MoO₃ catalysts. These activated carbon–supported catalysts will be explored for their potential in upgrading biooil and vegetable oils through deoxygenation. The use of cost-effective, high-performance catalysts under lower operating pressures is critical for the economic viability of bio-oil upgrading (Amouzadeh et al., 2025). Therefore, this study focuses on the synthesis and characterization of NiO, CoO, and MoO₃ catalysts supported on EFB-derived activated carbon for catalytic deoxygenation of hydrocarbons in pyrolysis oil.

METHOD

Synthesis of Catalysts using Activated Carbon as Support

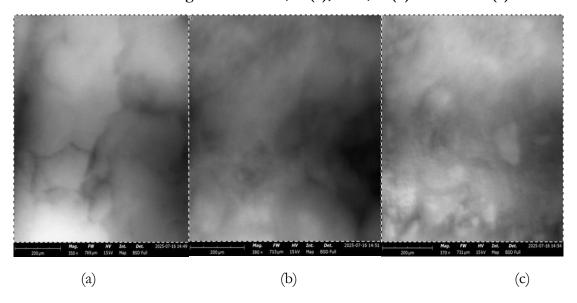
EFB fibers, collected from three palm oil processing plants in Benue State, Nigeria, were utilized as the precursor for activated carbon production (Abdullahi et al., 2024). The EFB fibers were initially washed extensively with deionized water to remove surface impurities, followed by drying in an oven at 105°C for 24 hours. A 20 wt% of NiO/C, MoO3/C and CoO/C catalysts were synthesized via the in-situ wet impregnation method. Stoichiometric amounts of Nickel Nitrate and hexahydrate $(Ni(NO_3)_2 \cdot 6H_2O)$ Ammonium Molybdate hexahydrate ((NH4)6Mo7O24.4H2O) were dissolved for each in deionized water and heated at 90°C for 2hrs to facilitate the formation of the metal oxide precursors. The dried biomass was then subjected to in-situ activation and simultaneous doping with nickel nitrate, cobalt nitrate, and ammonium molybdate as activating agents as well as metal oxide precursors to produce NiO/C, CoO/C, and MoO₃/C catalysts respectively via an in-situ activation method solution. Following impregnation, the mixture was maintained in a water bath at 90°C for 2 hours under constant agitation (700rpm) to ensure thorough reagent absorption. The impregnated sample was subsequently dried in an oven at 110°C for 24 hours. Then, activation process was carried out in a muffle furnace at 550°C for 4 hours (Liu et al., 2016). To eliminate residual activating agent and ash, the resulting activated carbon was refluxed with deionized water for 3 hours, a process repeated until a neutral pH was achieved. Finally, the activated carbon was refluxed with a 0.1M nitric acid (HNO₃) solution for 1 hour to further remove any remaining heavy metals (Anisuzzaman et al., 2015).

SEM-EDX Analysis for Catalysts Characterization

Samples were pulverized to ~0.15 mm (100 mesh) using a jaw crusher, disc mill, and vibrating cup mill, then mounted on carbon tape-coated stubs. The SEM was calibrated and operated under optimized parameters (accelerating voltage, beam current, and resolution) after a stabilization period. Mounted samples were inserted into the chamber, focused, and imaged at magnifications ranging from ×500 to ×150,000. Acquired micrographs were transferred to the EDX system, where selected regions were analyzed for elemental composition (Shrestha, 2016).

RESULT AND DISCUSSION

EDX Analysis of CoO/C Catalyst


The SEM-EDX results (Table 1) identify cobalt (41.78 wt%) and carbon (12.75 wt%) as the dominant elements in the synthesized catalyst. The unusually high cobalt concentration confirms substantial incorporation of the active phase onto the carbon support. Reported Co/activated carbon (CoO/C) catalysts typically exhibit loadings in the range of 5–20 wt% (Suri, 2001; Tsoncheva et al., 2015). The significantly higher cobalt fraction in this study suggests enhanced surface enrichment or stronger metal support interactions. This improvement could translate into greater catalytic activity and stability under hydrotreating conditions (Bregante, 2020). The carbon

fraction (12.75 wt%) reflects the biomass-derived activated carbon matrix, which provides high surface area and anchoring sites for metal dispersion (B. Wang et al., 2023).

Element	Element	Element	Atomic	Weight
Number	Symbol	Name	Conc.	Conc.
27	Со	Cobalt	22.50	41.78
6	С	Carbon	33.69	12.75
13	Al	Aluminium	13.94	11.85
14	Si	Silicon	8.36	7.40
20	Ca	Calcium	4.82	6.08
19	K	Potassium	4.86	5.99
12	Mg	Magnesium	4.27	3.27
26	Fe	Iron	1.83	3.22
16	S	Sulfur	1.92	1.94
15	P	Phosphorus	1.32	1.28
40	Zr	Zirconium	0.39	1.12
17	Cl	Chlorine	0.85	0.95
22	Ti	Titanium	0.44	0.66
41	Nb	Niobium	0.21	0.61
25	Mn	Manganese	0.27	0.48
29	Cu	Copper	0.22	0.44
23	V	Vanadium	0.12	0.19

SEM Morphological structural analysis in Plate1a revealed cobalt (41.78 wt%) and carbon (12.75 wt%) as the major constituents, confirming a high cobalt loading on a carbonaceous matrix. Reported CoO/C catalysts typically contain 5–20 wt% cobalt, such as ~7 wt% for ammonia decomposition and 2.5–15 wt% across CoO/C series (Wan et al., 2015). The significantly higher cobalt fraction observed in this study therefore places the material at the upper end of reported loadings suggesting Co-rich formulation. Such high loading is advantageous for catalytic activity, as it increases the density of active sites while the porous carbon support provides dispersion and stabilization.

Plate 1: SEM Image for the CoO/C (a), NiO/C (b) and MoO3 (c)

EDX Analysis of NiO/C Catalyst

SEM–EDX analyses presented in Table 2 of the cobalt and nickel-loaded activated carbon systems reveal strikingly different compositional features despite their shared biomass-derived carbon supports. By contrast, the NiO/C sample contained 37.04 wt% nickel and 19.41 wt% carbon, also surpassing the conventional NiO/C range (5–20 wt%) commonly applied in hydrogenation and reforming catalysis (Guo et al., 2019; Singh, 2017). Both systems therefore represent unusually metal-rich formulations, likely reflecting surface enrichment detectable by EDX, which could translate into high surface site density.

Element	Element	Element	Atomic	Weight
Number	Symbol	Name	Conc.	Conc.
28	Ni	Nickel	17.70	37.04
14	Si	Silicon	19.64	19.67
6	C	Carbon	45.32	19.41
19	K	Potassium	3.09	4.31
20	Ca	Calcium	2.73	3.90
13	Al	Aluminium	3.83	3.69
26	Fe	Iron	1.43	2.86
12	Mg	Magnesium	2.14	1.86
16	S	Sulfur	1.37	1.57
40	Zr	Zirconium	0.46	1.49
50	Sn	Tin	0.34	1.43
56	Ba	Barium	0.17	0.84
15	P	Phosphorus	0.59	0.65
11	Na	Sodium	0.68	0.55
17	Cl	Chlorine	0.37	0.47
25	Mn	Manganese	0.14	0.27

Table 2: EDX Analysis of NiO/C Catalyst

SEM/EDX Characterization of MoO3/C Catalyst

Elemental analysis confirms molybdenum as the dominant element on the catalyst surface, at 42.48 wt%, which far exceeds the carbon fraction present at 20.29 wt%. This indicates a metal-rich surface composition that contrasts with typical MoO/C catalysts reported to have molybdenum loadings of 10–15 wt% (Ehweiner et al., 2021). Compared with CoO/C and NiO/C catalysts, which have lower metal fractions and higher carbon contents (41.78 wt% Co and 37.04 wt% Ni respectively), the MoO/C catalyst shows a notably higher enrichment of active metal species. The catalyst also contains significant amounts of aluminum (12.58 wt%) and silicon (9.64 wt%), elements attributed to its biomass precursor source, as well as alkali and alkaline-earth elements such as calcium (3.80 wt%) and potassium (3.62 wt%).

An important characteristic is the presence of sulfur at 3.22 wt%, unlike the negligible amounts found in the CoO/C and NiO/C catalysts. Sulfur presence is significant because, in Mo-based hydrotreating catalysts, sulfiding is intentionally introduced to form the catalytically active MoS₂ phase (Harsono et al., 2015; H. Wang et al., 2021). The naturally occurring sulfur in this catalyst may play a dual role where it could facilitate in-situ sulfiding and enhancing catalyst activation

(Zheng et al., 2023). Similarly, additional trace elements such as magnesium, copper, and zinc, all below 2 wt%, further emphasize the complex promoter profile of this biomass-derived activated carbon catalyst (Kun & Ksepko, 2025). Alternatively, it may pose risks of site blocking depending on operating conditions(Bai et al., 2019).

Taken together, SEM and EDX analyses portray the MoO₃/C system as a unique, metal-rich composite material with sulfur and promoter functionalities not as highly present in CoO/C or Ni/C catalysts (Sakidja, 2003). This composition suggests that while CoO/C and NiO/C catalysts may be more suitable for hydrodeoxygenation and hydrogenation, MoO₃/C catalysts could offer superior performance in hydrotreating or syngas upgrading applications where beneficial sulfur—molybdenum interactions are critical (Güvenatam et al., 2014; McMahon, 1992).

Element	Element	Element	Atomic	Weight
Number	Symbol	Name	Conc.	Conc.
42	Mo	Molybdenum	13.26	42.48
6	С	Carbon	50.59	20.29
13	Al	Aluminium	13.96	12.58
14	Si	Silicon	10.28	9.64
20	Ca	Calcium	2.84	3.80
19	K	Potassium	2.77	3.62
16	S	Sulfur	3.00	3.22
29	Cu	Copper	0.85	1.80
12	Mg	Magnesium	2.01	1.63
30	Zn	Zinc	0.43	0.94

Table 3: EDX Analysis of MoO3/C Catalyst

Morphologically, the SEM micrograph of the Ni/AC sample (Plate 1b) illustrates a heterogeneous, porous surface typical of biomass-derived carbons, with micron-scale roughness that supports strong anchoring of Ni particles. Elemental analysis revealed secondary components including Al (11.85 wt%), Si (7.40 wt%), Ca (6.08 wt%), K (5.99 wt%), Mg (3.27 wt%), and Fe (3.22 wt%), consistent with the ash fingerprint of biomass-derived carbons. Rather than inert residues, these alkali and alkaline-earth species can act as in situ promoters, enhancing surface basicity, strengthening metal support interactions, and improving both activity and selectivity in hydrotreating and hydrodeoxygenation (HDO) pathways (Khandaker et al., 2025; Tsoncheva et al., 2015). In particular, K, Ca, and Mg are frequently reported to accelerate HDO rates and shift product distributions through base-catalyzed mechanisms (Adriano, 1986; Oudar, 1980). The unusually high silica fraction in the NiO/C sample suggests embedded SiO₂ domains that may impart acid-base bifunctionality and enhance thermal stability, as observed in Ni-SiO₂/C composites (Kwao et al., 2024). Trace elements such as S, P, Cl, Ti, Zr, and V were present below 1.5 wt%. While sulfur and chlorine are potential poisons, transition-metal oxides of Ti and Zr can contribute additional acid-base or redox functionality, potentially modifying catalyst performance (Bregante, 2020). Importantly, the much higher cobalt incorporation observed here compared to conventional CoO/C systems, when coupled with these intrinsic mineral promoters, suggests a synergistic effect (Gupta et al., 2021). This synergy is likely responsible for enhancing both catalytic stability and efficiency under hydrotreating conditions (Ay and Sen, 2021; Tsiotsias et al., 2020).

Table 4: Comparative physicochemical features of CoO/C, NiO/C, and MoO₃/C catalysts derived from activated carbon supports.

Catalyst	Major Metal (wt%)	Carbon (wt%)	Key Promoter Elements (wt%)	Notable Features and Implications
CoO/C	Co: 41.78	21.26	K (4.24), Ca (3.92), Si (8.27), Al (8.23), Fe (3.12), Mg (1.93), S (1.67)	Balanced metal/carbon ratio; high alkali and alkaline earth promoters enhance basicity; suitable for hydrodeoxygenation (HDO) and hydrogenation reactions.
NiO/C	Ni: 37.04	19.41	Si (19.67), Al (3.69), K (4.31), Ca (3.90), Fe (2.86), Mg (1.86), S (1.57), Zr/Sn/Ba traces	Significant Si/Al presence (from biomass ash) provides structural stability and acidity; Ni enhances C–C hydrogenolysis; good for hydrocracking and HDO.
MoO ₃ /C	Mo: 42.48	20.29	Al (12.58), Si (9.64), K (3.62), Ca (3.80), S (3.22), Mg (1.63), Cu/Zn traces	Strongly metal-rich surface; unique sulfur co-presence may facilitate in-situ MoS ₂ formation, advantageous for hydrotreating and syngas upgrading.

CONCLUSION

This research has emphasized the promise of activated carbon-supported catalysts in hydrodeoxygenation and bio-oil upgrading, demonstrating how their high surface area, tunable porosity, and surface chemistry enhance catalytic activity. In particular, activated carbon derived from EFB not only offers advantages of abundance, low cost, and agricultural residue valorization but also provides a naturally promoted support matrix that enhances metal dispersion. The notably high metal content and the presence of intrinsic promoter elements in the EFB-derived activated carbon further distinguish this work, suggesting stronger metal support interactions and improved catalytic stability under hydrotreating conditions. While challenges remain including scale-up feasibility, reproducibility, and long-term stability future research should focus on in situ characterization of active sites, scalable synthesis strategies, and techno-economic as well as lifecycle assessments. Activated carbon-supported catalysts, especially those from EFB, represent a globally relevant and scalable pathway to green energy by aligning environmental sustainability with industrial innovation.

REFERENCE

- Abdullah, N., Sulaiman, F., & Gerhauser, H. (2011). Characterisation of oil palm empty fruit bunches for fuel application. *Journal of Physical Science*, 22(1), 1–24.
- Abdullahi, B. H., Sokoto, A. M., Muhammad, A. B., Alhassan, Y., & Muhammad. (2024). C. Journal of Process Chemistry and Technology.
- Adriano, D. C. (1986). Other trace elements. In *Trace elements in the terrestrial environment* (pp. 470–501). Springer.
- Al-Harbi, M. H., Al-Zahrani, A. A., & Al-Otaibi, Y. M. (2018). Preparation and characterization of activated carbon from oil palm empty fruit bunch using different chemical activating agents. *Journal of Environmental Chemical Engineering*, 6(3), 3384–3391. https://doi.org/10.1016/j.jece.2018.05.017
- Amouzadeh, E., Dianat, I., Faradmal, J., & Babamiri, M. (2025). Optimizing mobile app design for older adults: systematic review of age-friendly design. *Aging Clinical and Experimental Research*, *37*(1). https://doi.org/10.1007/s40520-025-03157-7
- Anisuzzaman, S. M., Joseph, C. G., Wan Daud, W. M. A. B., Krishnaiah, D., Yee, H. S., Akhtar, M. S., Naseem, M. T., Ali, S., & Zaman, W. (2015). Metal-Based Catalysts in Biomass Transformation: From Plant Feedstocks to Renewable Fuels and Chemicals. *Catalysts*, 15(1), 40.
- Bai, P., Etim, U. J., Yan, Z., Mintova, S., Zhang, Z., Zhong, Z., & Gao, X. (2019). Fluid catalytic cracking technology: current status and recent discoveries on catalyst contamination. *Catalysis Reviews*, *61*(3), 333–405.
- Bregante, D. T. (2020). Catalytic consequences of inner-and outer-sphere interactions at the solid-liquid interface in zeolites.
- Centi, G., Lanzafame, P., & Perathoner, S. (2011). Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. *Catalysis Today*, 167(1), 14–30. https://doi.org/10.1016/j.cattod.2010.10.099
- Chadha, U., Selvaraj, S. K., Ashokan, H., Hariharan, S. P., Paul, V. M., Venkatarangan, V., & Paramasivam, V. (2022). Complex nanomaterials in catalysis for chemically significant applications: From synthesis and hydrocarbon processing to renewable energy applications. *Advances in Materials Science and Engineering*, 1552334. https://doi.org/10.1155/2022/1552334
- Collin, S. M. A., Wan, G. J., Ashri, M., & Wan, B. (2015). Preparation and characterization of activated carbon from Typha orientalis leaves. *International Journal of Industrial Chemistry*, 6(1), 9–21. https://doi.org/10.1007/s40090-014-0027-3

- Dam, J., & Elbersen, W. (2004). Palm oil production for oil and biomass: The solution for sustainable oil production and certifiably sustainable biomass production. *Biomassa-Upstream Stuurgroep*, 4, 1–9.
- Ehweiner, M. A., Belaj, F., Kirchner, K., & Mösch-Zanetti, N. C. (2021). Synthesis and reactivity of a bioinspired molybdenum (IV) acetylene complex. *Organometallics*, 40(15), 2576–2583.
- Guo, J., Huo, J., Liu, Y., Wu, W., Wang, Y., Wu, M., & Wang, G. (2019). Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. *Small Methods*, *3*(9), 1900159.
- Gupta, P. K., Kumar, V., & Maity, S. (2021). Renewable fuels from different carbonaceous feedstocks: a sustainable route through Fischer–Tropsch synthesis. *Journal of Chemical Technology & Biotechnology*, 96(4), 853–868.
- Güvenatam, B., Kurşun, O., Heeres, E. H. J., Pidko, E. A., & Hensen, E. J. M. (2014). Hydrodeoxygenation of mono- and dimeric lignin model compounds on noble metal catalysts. *Catalysis Today*, *233*, 83–91. https://doi.org/10.1016/j.cattod.2013.12.011
- Hadi, B., Sokoto, A. M., & Muhammad, A. B. (2020). Native palm oil empty fruit bunch fiber biomass characterization for pyrolysis process. *Nigerian Journal of Solar Energy*, *33*, 152–157.
- Hadjar, S., Ngadi, N., Abdul, A., Saidina, N., Jusoh, M., & Wong, S. (2016). Preparation of activated carbon from empty fruit bunch for hydrogen storage. *Journal of Energy Storage*, 8, 1–5. https://doi.org/10.1016/j.est.2016.10.001
- Harsono, S. S., Grundmann, P., & Siahaan, D. (2015). Role of biogas and biochar palm oil residues for reduction of greenhouse gas emissions in the biodiesel production. *Energy Procedia*, *65*, 344–351. https://doi.org/10.1016/j.egypro.2015.01.063
- Idris, R., Chong, W. W. F., Ali, A., Idris, S., Hasan, M. F., Ani, F. N., & Chong, C. T. (2021). Phenol-rich bio-oil derivation via microwave-induced fast pyrolysis of oil palm empty fruit bunch with activated carbon. *Environmental Technology & Innovation*, 21, 101291. https://doi.org/10.1016/j.eti.2020.101291
- Khandaker, T., Islam, T., Nandi, A., Anik, M. A. A. M., Hossain, M. S., Hasan, M. K., & Hossain, M. S. (2025). Biomass-derived carbon materials for sustainable energy applications: A comprehensive review. *Sustainable Energy & Fuels*, *9*(3), 693–723. https://doi.org/10.1039/D4SE01234B
- Kun, U. H., & Ksepko, E. (2025). Advancing Municipal Solid Waste Management Through Gasification Technology. Processes.
- Kwao, S., Vedachalam, S., Dalai, A. K., & Adjaye, J. (2024). Review of current advances in hydrotreating catalyst support. *Journal of Industrial and Engineering Chemistry*, 135, 1–16. https://doi.org/10.1016/j.jiec.2024.02.001

- Lindfors, C., Hernandez-Mena, L. E., Pecora, A. A. B., Beraldo, A. L., Mohamed Noor, N., Chiaramonti, D., Buffi, M., Rizzo, A. M., Prussi, M., Martelli, F., Goodwin, V., Yoosuk, B., Ratana, T., Tungkamani, S., Ben-Iwo, J., Manovic, V., Longhurst, P., Sadeek, S. A., Ahmed, H. S., & Sheth, S. (2017). A comprehensive characterization of pyrolysis oil from softwood barks. *Polymers*, 11(9). https://doi.org/10.3390/polym11091387
- Liu, T., Wei, D., Zhang, G., Hu, L., Du, B., & Wei, Q. (2016). A comparison of the influence of flocculent and granular structure of sludge on activated carbon: preparation, characterization and application. *RSC Advances*, 6(90), 87353–87361.
- McMahon, T. (1992). High-temperature oxidation of MoO2-, a-Cr2O3-, and a-Al2O3-forming materials in low oxygen partial pressure atmospheres of H2/H2O/N2 and CO/CO2/N2.
- Mortensen, P. M., Grunwaldt, J. D., Jensen, P. A., Knudsen, K. G., & Jensen, A. D. (2011). A review of catalytic upgrading of bio-oil to engine fuels. *Applied Catalysis A: General*, 407(1–2), 1–19. https://doi.org/10.1016/j.apcata.2011.08.046
- Muhammad, C., Almustapha, M. N., Tambuwal, A. D., & Idris, B. H. A. (2021). Application of green catalyst synthesized from snail shell in conversion of marula seeds oil to biodiesel. *Journal of Fundamentals of Renewable Energy and Applications*, 11, 1000002.
- Muhammad, M. U., Hadi, B. A., Idri, B., & Abduljalil, M. M. (2021). Preparation of high surface area activated carbon from native rice husk. *London Journal of Engineering Research*, 21(3), 13–19.
- Nachenius, R. W., Ronsse, F., Venderbosch, R. H., & Prins, W. (2013). Biomass pyrolysis. In *Advances in Chemical Engineering* (Vol. 42, pp. 1–68). Elsevier. https://doi.org/10.1016/B978-0-12-386505-2.00002-X
- Naik, S. N., Goud, V. V, Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003
- Napier, C. J., Mabokela, R. O., & King, K. L. (2002). Apartheid no more: Case studies of Southern African universities in the process of transformation. Canadian Journal of African Studies, 36(1), 159–180. https://doi.org/10.2307/4107413
- Nb, O., Shamsuddin, N., & Uemura, Y. (2016). Activated carbon of oil palm empty fruit bunch (EFB): Core and shaggy. *Procedia Engineering*, 148, 758–764. https://doi.org/10.1016/j.proeng.2016.06.610
- Nda-Umar, U. I., Ramli, I., Muhamad, E. N., Taufiq-Yap, Y., & Azri, N. (2020). Synthesis and characterization of sulfonated carbon catalysts derived from biomass waste and its evaluation in glycerol acetylation. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00784-0

- Omar, R., Idris, A., Yunus, R., Khalid, K., & Aida Isma, M. I. (2011). Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel, 90(4), 1536–1544. https://doi.org/10.1016/j.fuel.2011.01.023
- Otti, V. I., Ifeanyichukwu, H. I., Nwaorum, F. C., & Ogbuagu, F. U. (2014). Sustainable oil palm waste management in engineering development. *Civil and Environmental Research*, 6(5), 121–126.
- Oudar, J. (1980). Sulfur adsorption and poisoning of metallic catalysts. *Catalysis Reviews—Science* and Engmeering, 22(2), 171–195.
- Pogaku, R., Hardinge, B. S., Vuthaluru, H., & Amir, H. A. (2016). Production of bio-oil from oil palm empty fruit bunch by catalytic fast pyrolysis: A review. Biofuels, 7(6), 647–660. https://doi.org/10.1080/17597269.2016.1187539
- Purnama, H. (2003). Catalytic study of copper-based catalysts for steam reforming of methanol.
- Ronsse, F., Dickinson, D., Nachenius, R., & Prins, W. (2013). Biomass pyrolysis and biochar characterization. In Proceedings of the 1st FOREBIOM Workshop (Vol. 4, No. 4, p. 2013).
- Rueda-Ordóñez, Y. J., Arias-Hernández, C. J., Manrique-Pinto, J. F., Gauthier-Maradei, P., & Bizzo, W. A. (2019). Assessment of the thermal decomposition kinetics of empty fruit bunch, kernel shell and their blend. *Bioresource Technology*, 292, 121923. https://doi.org/10.1016/j.biortech.2019.121923
- Sait, H. H., Hussain, A., Salema, A. A., & Ani, F. N. (2012). Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresource Technology, 118, 382–389. https://doi.org/10.1016/j.biortech.2012.04.081
- Sakidja, R. (2003). Phase stability and transition metal addition in molybdenum-silicon-boron alloys.
- Shrestha, S. (2016). Chemical, structural and elemental characterization of biosorbents using FE-SEM, SEM-EDX, XRD/XRPD and ATR-FTIR techniques. *J Chem Eng Process Technol*, 7(3), 1–11.
- Singh, R., S. M. K., B. S., S. A., K. D. K., G. P. C., & G. P. K. (2017). Facile synthesis of highly conducting and mesoporous carbon aerogel as platinum support for PEM fuel cells. *International Journal of Hydrogen Energy*, 42(16), 11110–11117.
- Sulaiman, F., & Abdullah, N. (2011). Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy, 36(5), 2352–2359. https://doi.org/10.1016/j.energy.2010.12.067
- Sun, Y., Yue, Q., Gao, B., Li, Q., Huang, L., Yao, F., & Xu, X. (2012). Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption. *Journal of Colloid and Interface Science*, 368(1), 521–527.

- Teo, E. Y. L., Muniandy, L., Ng, E. P., Adam, F., Mohamed, A. R., Jose, R., & Chong, K. F. (2016). High surface area activated carbon from rice husk as a high performance supercapacitor electrode. *Electrochimica Acta*, 192, 110–119.
- Triantafyllidis, S. K. (2013). Biofuels get in the fast lane: Developments in plant feedstock production and processing. *Advances in Crop Science and Technology*, 1(4), 1–16. https://doi.org/10.4172/2329-8863.1000117
- Tsiotsias, A. I., Charisiou, N. D., Yentekakis, I. V, & Goula, M. A. (2020). The role of alkali and alkaline earth metals in the CO2 methanation reaction and the combined capture and methanation of CO2. *Catalysts*, 10(7), 812.
- Tsoncheva, T., Genova, I., Stoycheva, I., Spassova, I., Ivanova, R., Tsyntsarski, B., & Petrov, N. (2015). Activated carbon from waste biomass as catalyst support: Formation of active phase in copper and cobalt catalysts for methanol decomposition. *Journal of Porous Materials*, 22(5), 1127–1136. https://doi.org/10.1007/s10934-015-9995-9
- Wang, B., Lan, J., Bo, C., Gong, B., & Ou, J. (2023). Adsorption of heavy metal onto biomass-derived activated carbon. *RSC Advances*, 13(7), 4275–4302. https://doi.org/10.1039/D2RA07517A
- Wang, H., Wu, J., Xiao, Z., Ma, Z., Li, P., Zhang, X., & Fang, X. (2021). Sulfidation of MoO3/γ-Al2O3 towards a highly efficient catalyst for CH4 reforming with H2S. *Catalysis Science & Technology*, 11(3), 1125–1140.
- Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. *Energy Conversion and Management*, 45(5), 651–671. https://doi.org/10.1016/S0196-8904(03)00177-8
- Yan, K., Wang, D., & Li, H. (2021). Atom doping engineering of metal/carbon catalysts for biomass hydrodeoxygenation. *ACS Sustainable Chemistry & Engineering*, 9(49), 16531–16555. https://doi.org/10.1021/acssuschemeng.1c05908
- Yang, Y., Peng, Y., Liu, Y., & Luo, Z. (2014). Preparation of activated carbon from empty fruit bunch by CO2 activation. *Bioresource Technology*, 166, 451–456. https://doi.org/10.1016/j.biortech.2014.05.059
- Yin, C. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. *Fuel*, 90(3), 1128–1132. https://doi.org/10.1016/j.fuel.2010.11.031
- Yoo, H. M., Park, S. W., Seo, Y. C., & Kim, K. H. (2019). Applicability assessment of empty fruit bunches from palm oil mills for use as bio-solid refuse fuels. *Journal of Environmental Management*, 234, 1–7. https://doi.org/10.1016/j.jenvman.2018.11.031
- Yusufu, M. I., Ariahu, C. C., & Igbabul, B. D. (2012). Production and characterization of activated carbon from selected local raw materials. *African Journal of Pure and Applied Chemistry*, 12(3), 201–210. https://doi.org/10.5897/AJPAC12.022

- Zhang, P., Zhu, H., & Dai, S. (2015). Porous carbon supports: Recent advances with various morphologies and compositions. *ChemCatChem*, 7(18), 2788–2805.
- Zheng, X., Lei, G., Wang, S., Shen, L., Zhan, Y., & Jiang, L. (2023). Advances in resources recovery of H2S: A review of desulfurization processes and catalysts. *ACS Catalysis*, *13*(17), 11723–11752. https://doi.org/10.1021/acscatal.3c02709.