Assessment of Thermal Oxidizer (Tox) Performance Efficiency

Authors

  • Budi Sulistiyo Nugroho Polytechnic of Energy and Mineral Akamigas
  • Marsha Adinda Putri Polytechnic of Energy and Mineral Akamigas

DOI:

https://doi.org/10.61978/catalyx.v1i2.359

Keywords:

Thermal Oxidizer, Emissions, Operation, Efficiency

Abstract

The use of a Thermal Oxidizer (TOX) aims to treat industrial waste gases by oxidizing harmful gases, such as sulphur dioxide (SO₂) and hydrogen sulphide (H₂S), at high temperatures. This study aims to evaluate the TOX operating conditions and analyze its efficiency in reducing harmful emissions released to the environment. Operating data is based on temperature, pressure, gas flow rate, and SO₂ concentration measurements from the Thermal Oxidizer (TOX). The measurement results show that the SO₂ emissions meet the government's standard setting below the maximum limit of 2,600 mg/Nm³. However, the actual TOX performance efficiency of 45.61% decreased compared to the initial design efficiency of 63.27%. This decrease was due to several factors, including reducing the hot oil flow rate and leakage in the chamber.

References

A., S., & Jones, B. (2020). Optimalisasi Thermal Oxidizer di Industri Kimia. Chemical Engineering Journal, 300, 123–130.

Bekhouche, S., Trache, D., Akbi, H., Abdelaziz, A., Tarchoun, A. F., & Boudouh, H. (2023). Thermal decomposition behavior and kinetic study of nitrocellulose in presence of ternary nanothermites with different oxidizers. FirePhysChem, 3(3), 208–216. https://doi.org/10.1016/j.fpc.2023.02.001

Brown, R. (2021). Challenges in the Operation of Thermal Oxidizers. Air Quality Research, 19(4), 865–874.

C., L., & D., K. (2020). Performance Evaluation of Thermal Oxidizers. Environ Sci Technol, 54, 9432–9440.

Chen, Z., Wang, L., Liu, S., Zhang, Y., Xia, Z., & Hu, S. (2023). The effect of coupled combustion reaction on conjugate heat transfer in boundary layer of a segregated oxidizer/fuel solid motor. International Journal of Thermal Sciences, 193. https://doi.org/10.1016/j.ijthermalsci.2023.108526

Doe, J. (2021). Comparative Analysis of Fuels Used in Thermal Oxidizers. Journal of Cleaner Production, 256(1), 120–130.

Environmental Protection Agency, “Thermal Oxidizers: A Review of Technology. (2018).

Han, S., Hua, Y., Lin, Y., Yao, L., Wang, Z., Zheng, Z., Yang, J., Zhao, C., Zheng, C., & Gao, X. (2023). Fault diagnosis of regenerative thermal oxidizer system via dynamic uncertain causality graph integrated with early anomaly detection. Process Safety and Environmental Protection, 179, 724–734. https://doi.org/10.1016/j.psep.2023.09.058

Hidup, B. L. (2021). Laporan Tahunan Emisi Gas Rumah Kaca. Jakarta.

International Energy Agency, “Global CO2 Emissions in the Industrial Sector. (2020).

Johnson, M., & Wang, L. (2020). Operational Parameters Affecting the Performance of Thermal Oxidizers. Chemical Engineering Journal, 388, 124–135.

Kehutanan, K. L. H. (2021). Statistik Emisi CO2 Indonesia.

Muhammad, Z., Utama, A., Ratni, D., & Sariadi, S. (2023). Studi Kasus Pengaruh Perbedaan Spesifikasi Fuel Gas terhadap Kinerja Pembakaran Thermal Oxidizer Unit di PT X. Jurnal Teknologi. https://doi.org/10.30811/teknologi.v23i2.4334.

Niu, Y., Zhang, Y., Shi, Z., Chi, G., Yu, X., & Zhu, T. (2024). Optimization and Simulation Analysis of Furnace Structure for Regenerative Thermal Oxidizer. E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202452003018.

Protocol, G. G. (2021). Technical Guidance for Calculating Scope 1 Emissions.

Pu, G., Li, X., & Yuan, F. (2021). Numerical Study on Heat Transfer Efficiency of Regenerative Thermal Oxidizers with Three Canisters. https://doi.org/10.3390/PR9091621.

Ren, K., Zhang, Z., Qin, H., Tan, J., & Hao, X. (2024). Velocity and Temperature Simulation for a Cylindrical Regenerative Thermal Oxidizer. ACS Omega, 9(14), 15893–15903. https://doi.org/10.1021/acsomega.3c08352

Shi, X., Yang, L., Jiang, L., Bi, F., & Zhang, G. (2022). Anti-migration of Nitrogen-rich N-Heterocyclic Ferrocenes and Their Combustion Catalytic Properties in the Thermal Decomposition of Energetic Oxidizers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 648(2). https://doi.org/10.1002/zaac.202100324

Truong, V. M., & Huynh, T. B. (2023). Numerical Study on Heat Transfer Characteristics of Regenerative Thermal Oxidizers. Lecture Notes in Networks and Systems, 567 LNNS, 378–388. https://doi.org/10.1007/978-3-031-19694-2_34

UNE. (2020). United Nations Environment Programme, “Air Pollution and Health.

Wang, F., Lei, X., & Hao, X. (2020). Key factors in the volatile organic compounds treatment by regenerative thermal oxidizer. J. Air & Waste Manage. Assoc, 70(5), 557–567. https://doi.org/10.1080/10962247.2020.1752331.

W.H.O. (2020). Hidrogen Sulfida: Panduan untuk Perlindungan Kesehatan.

Y. (2019). Efisiensi Thermal Oxidizer dalam Mengurangi Emisi VOCs. J Environ Manage, 250, 109–115.

Yoon, D.-H., Han, B.-S., Lim, T.-Y., Yang, E.-C., Keon, Y.-W., An, H.-W., Kim, C.-H., Kang, S.-C., Jung, M.-K., Kim, J.-G., Oh, H.-C., Jeon, C.-H., Jeon, M.-S., Jeon, A.-Y., Park, H.-M., Jung, Y.-H., Jung, H.-M., Hwang, H., Jeong, H., … Jeon, D.-H. (2022). Implementation of 100CMM Thermal Storage Combustion Oxidizer for VOCs Reduction. International Conference on Control, Automation and Systems, 2022-November, 1814–1818. https://doi.org/10.23919/ICCAS55662.2022.10003966

Zhang, H.-Y., Shi, Z., Dong, Y.-Y., Wang, X.-W., Lin, K.-F., Xia, D.-B., Zhang, J., & Yang, Y.-L. (2024). Thermal shock triggers microexplosion combustion in graded fuel and oxidizer encapsulation microspheres with improved combustion efficiency. Combustion and Flame, 265. https://doi.org/10.1016/j.combustflame.2024.113499

Downloads

Published

2024-10-24

How to Cite

Nugroho, B. S., & Putri, M. A. (2024). Assessment of Thermal Oxidizer (Tox) Performance Efficiency. Catalyx : Journal of Process Chemistry and Technology, 1(2), 83–96. https://doi.org/10.61978/catalyx.v1i2.359

Issue

Section

Articles